共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N Shamsadeen C J Duncan 《Virchows Archiv. B, Cell pathology including molecular pathology》1989,57(5):315-321
Incubation in vitro of mouse or rat diaphragms or mouse soleus muscle with the lysosomotropic agent leucine methyl ester (10 mM) produced a slowly-developing swelling of the sarcoplasmic reticulum (SR), showing that this organelle is able to take up amino acid methyl esters and conforming with previous suggestions that the SR may serve some of the functions of the lysosomal system in muscle cells. Cellular damage followed, sometimes associated with the shrinkage of the SR, but experiments with inhibitors of lysosomal cathepsins suggest that acid hydrolases were not implicated in this damage. It is suggested that the system producing myofilament damage is located on the SR and that it may be directly activated by membrane perturbation. 相似文献
3.
Sarcoplasmic reticulum proteins have been cross-linked in situ with two reagents, the disulphide-bridged bifunctional imido ester, dimethyl-3,3'-dithiobispropionimidate dihydrochloride and the mild oxidant cupric phenanthroline. Analysis of proteins so cross-linked by electrophoresis on agarose/acrylamide gels reveals that a series of new polypeptides, up to a molecular weight of 900 000, are formed. These have molecular weights which are multiples of 100 000. Further analysis of samples by electrophoresis in a second dimensions containing a reducing agent revealed the monomeric polypeptides from which the cross-linked polypeptides were formed. With dimethyl 3,3'-dithiobispropionimidate dihydrochloride homopolymers of the Ca2+-stimulated ATPase, calsequestrin and/or calcium binding protein were formed. With cupric phenanthroline only the Ca2+-stimulated ATPase was involved in polymer formation. It has been confirmed on another gel system that these two proteins which are involved in Ca2+ binding are not cross-linked intermolecularly with this latter reagent. We conclude that the 100 000 dalton Ca2+-stimulated ATPase polypeptides are within 2 A of each other in the membrane while calsequestrin and/or calcium binding protein are within 11 A of each other. Although there appears to be no limit to the extent of cross-linking of any of these polypeptides there is not indication of heteropolymer associations between them. 相似文献
4.
5.
Characterization of sarcoplasmic reticulum from skeletal muscle 总被引:11,自引:0,他引:11
6.
Effects of the lethal fraction (MD-9) from the venom of the Mojave rattlesnake, Crotalus scutulatus, on sarcoplasmic reticulum were investigated. The calcium sequestering activity of the vesicles was reduced by the lethal fraction and subsequent release of calcium was enhanced. These effects were observed to be dependent upon MD-9 concentration and the length of preincubation time with the vesicles. An enhanced ATPase activity that was affected by concentration and MD-9 preincubation time was also observed. Both calcium uptake and ATPase activity effects may be due to a phospholipase activity associated with the fraction. 相似文献
7.
While differing in numerous physiological and biochemical parameters, mammalian cardiac and skeletal muscles exhibit many common ultrastructural characteristics. General subcellular organization is similar with longitudinal disposition and organization of the myofibrils as well as subcellular organelles such as mitochondria, sarcoplasmic reticulum and transverse tubules. Significant differences are more readily discerned in terms of degree, not only with respect to relative amounts of various organelles, but also in regard to membrane composition. It is these macromolecular variations in membrane components which may, at least in part, provide the basis for differences in overall functional characteristics in the muscles.In cardiac, as well as skeletal muscle, the concentration of Ca2+ ions at specific intracellular sites regulates the contractile state of the muscle. The differences in mechanism and sources of Ca2+ for contraction in cardiac and skeletal muscle are but a few of the unsolved areas which are now being addressed. We shall focus primarily on research advances involving cardiac and skeletal SR emphasizing the contrasting features related to their functional roles in control of contraction and metabolic events. 相似文献
8.
Sarcoglycans are transmembrane proteins that are members of the dystrophin complex. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle fibers. However, it is still unclear whether or not sarcoglycans are restricted to the sarcolemma. To address this issue, we examined alpha-, beta-, delta-, and gamma-sarcoglycan expression in femoral skeletal muscle from control and dystrophin-deficient mice and rats using confocal microscopy and immunoelectron microscopy. Confocal microscopy of the tissues in cross-section showed that all sarcoglycans were detected under the sarcolemma in rats and control mice. delta- and gamma-sarcoglycan labeling demonstrated striations in the longitudinal section, suggesting that the proteins were expressed in the sarcoplasmic reticulum (SR) or transverse tubules (T-tubules). Moreover, such striations of both sarcoglycans were recognized in the dystrophin-deficient mouse skeletal muscle. Double labeling with phalloidin or alpha-actinin and delta- or gamma-sarcoglycan showed different labeling patterns, indicating that delta-sarcoglycan localization was distinct from that of gamma-sarcoglycan. Immunoelectron microscopy clarified that delta-sarcoglycan was localized in the terminal cisternae of the SR, while gamma-sarcoglycan was found in the terminal cisternae and longitudinal SR over I-bands but not over A-bands. These data demonstrate that delta- and gamma-sarcoglycans are components of the SR in skeletal muscle, suggesting that both sarcoglycans function independent of the dystrophin complex in the SR. 相似文献
9.
Schulz JS Palmer N Steckelberg J Jones SJ Zeece MG 《Biochimica et biophysica acta》2006,1764(9):1429-1435
Microarrays were developed to profile the level of proteins associated with calcium regulation in sarcoplasmic reticulum (SR) isolated from porcine Longissimus muscle. The microarrays consisted of SR preparations printed onto to glass slides and probed with monoclonal antibodies to 7 target proteins. Proteins investigated included: ryanodine receptor, (RyR), dihydropyridine receptor, (DHPR), triadin (TRI), calsequestrin (CSQ), 90 kDa junctional protein (JSR90), and fast-twitch and slow-twitch SR calcium ATPases (SERCA1 and SERCA2). Signal from a fluorescently-labeled detection antibody was measured and quantitated using a slide reader. The microarray developed was also employed to profile Longissimus muscle SR proteins from halothane genotyped animals. Significant (P<0.05) reductions in levels of several proteins were found including: RyR, CSQ, TRI, DHPR and SERCA2 in SR samples from halothane positive animals. The results illustrate the potential of microarrays as a tool for profiling SR proteins and aiding investigations of calcium regulation. 相似文献
10.
Membrane vesicles from sarcoplasmic reticulum of rabbit skeletal muscle were incorporated into a bilayer lipid membrane. With this system, single current fluctuation was observed in the presence of 50 mM Ba-gluconate. This channel activity was observed only in vesicles from terminal cisternae. The single channel conductance was 14.1 pS, and the channel state was almost wholly open. The open-close transition of the channel obeyed simple two-state kinetics and was voltage-independent. The ionic selectivity was also studied, and the channel showed no selectivity among Ba, Ca, Mn, and Mg. On the other hand, it was less permeable to Cs than to Ba. Based on these results, the relation of the Ca channel to excitation-contraction coupling is discussed. 相似文献
11.
The quenching of the intrinsic protein fluorescence of sarcoplasmic reticulum Ca-ATPase from the rabbit skeletal muscles by hydrophylic (NaI, CsCl) or hydrophobic (pyrene, fluorescamine) substances has been studied. CsCl (up to 1 M) has been shown not to affect the intrinsic protein fluorescence while NaI (250 mM) quenches it at 15%, pyrene (8 mkM) decreases the intrinsic fluorescence of Ca-ATPase at 35% and fluorescamine (up to 40 mkM)--at 80%. Possible mechanisms of the interaction of the quenchers with the intrinsic fluorescence of sarcoplasmic reticulum Ca-ATPase are being discussed. 相似文献
12.
Carnosine (beta-alanyl-L-histidine), which is present in millimolar concentrations in skeletal muscles, induces Ca2+ release from the heavy fraction of rabbit skeletal muscle sarcoplasmic reticulum by activation ruthenium red-sensitive Ca-release channels. The effect of carnosine is dose-dependent, which indicates the presence of saturable carnosine-binding sites in the Ca-release channel molecule. The half-maximal Ca2+ release is observed in the presence of 8.7 mM carnosine. At the same time, carnosine addition to the medium increases the affinity of sarcoplasmic reticulum Ca-channels for the Ca-release activators, caffeine and adenine nucleotides. It is concluded that carnosine is an endogenous regulator of skeletal muscle sarcoplasmic reticulum Ca-channels which modulates the affinity of these channels for different ligands. 相似文献
13.
J Stuart I N Pessah T G Favero J J Abramson 《Archives of biochemistry and biophysics》1992,292(2):512-521
The photooxidizing xanthene dye rose bengal is shown to induce rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. In the presence of light, nanomolar concentrations of rose bengal increase the Ca2+ permeability of the SR and stimulate the production of singlet oxygen (1O2). In the absence of light, no 1O2 production is measured. Under these conditions, higher concentrations of rose bengal (micromolar) are required to stimulate Ca2+ release. Furthermore, removal of oxygen from the release medium results in marked inhibition of the light-dependent reaction rate. Rose bengal-induced Ca2+ release is relatively insensitive to Mg2+. At nanomolar concentrations, rose bengal inhibits [3H]ryanodine binding to its receptor. beta,gamma-Methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, inhibits rose bengal-induced Ca2+ release and prevents rose bengal inhibition of [3H]ryanodine binding. Ethoxyformic anhydride, a histidine modifying reagent, at millimolar concentrations induces Ca2+ release from SR vesicles in a manner similar to that of rose bengal. The molecular mechanism underlying rose bengal modification of the Ca2+ release system of the SR appears to involve a modification of a histidyl residue associated with the Ca2+ release protein from SR. The light-dependent reaction appears to be mediated by singlet oxygen. 相似文献
14.
A Takagi 《Biochimica et biophysica acta》1971,248(1):12-20
15.
The 95 kDa transmembrane glycoprotein triadin is believed to be an essential component of excitation-contraction coupling in the junctional sarcoplasmic reticulum of skeletal muscle fibers. It is debatable whether triadin mediates intraluminal interactions between calsequestrin and the ryanodine receptor exclusively or whether this junctional protein provides also a cytoplasmic linkage between the Ca2+-release channel and the dihydropyridine receptor. Here, we could show that native triadin exists as disulfide-linked homo-polymers of above 3000 kDa. Under non-reducing conditions, protein bands representing the alpha1-dihydropyridine receptor and calsequestrin did not show an immunodecorative overlap with the extremely high-molecular-mass triadin clusters. Following chemical crosslinking, the ryanodine receptor and triadin exhibited a similarly decreased electrophoretic mobility. However, immunoblotting of diagonal non-reducing/reducing two-dimensional gels clearly demonstrated a lack of overlap between the immunodecorated bands representing triadin, the alpha1-dihydropyridine receptor, the ryanodine receptor and calsequestrin. Thus, in native membranes triadin appears to form large self-aggregates primarily. Although triadin exists in a close neighborhood relationship to the Ca2+-release channel tetramers, it does not seem to be directly linked to the other main triad components implicated in the regulation of the excitation-contraction-relaxation cycle and Ca2+-homeostasis. This agrees with a proposed role of triadin in the maintenance of overall triad architecture. 相似文献
16.
17.
Xin H Tanaka H Yamaguchi M Takemori S Nakamura A Kohama K 《Biochemical and biophysical research communications》2005,332(3):756-762
Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca2+. The SR releases Ca2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca2+ occurs through a channel composed of VR1. 相似文献
18.
19.
A I Marzoev B V Rubtsov G I Klebanov Iu A Vladimirov 《Biulleten' eksperimental'no? biologii i meditsiny》1980,89(5):541-543
Thyrotoxicosis in rabbits was induced by prolonged intraperitoneal injection of L-thyroxin. The development of thyroxicosis was assoiated with a decreased Ca2+ accumulation rate by sarcoplasmic reticulum (SR) fragments and a lowered Ca2+ dependent ATPase activity. As compared to the analogous parameters in normal animals. Ca2+ accumulation rate and ATPase activity of thyrotoxicosis animals decreased by 60 and 25%, respectively. The changes in the specific parameters of SR were also observed during incubation of normal SR samples in the medium containing thyroxin (10-5 M). The changes seen in SR functioning in thyrotoxicosis animals are likely to be related to structural rearrangements of lipoprotein surroundings of Ca-ATPase. 相似文献
20.
The effect of endurance exercise on the capacity of crube homogenates (CH) to sequester Ca2+ was determined in the slow type I soleus, the fast type IIA deep region of the vastus lateralis (DVL), and the fast type IIB superficial region of the vastus lateralis (SVL). The Ca2+ uptake capacity was affected by exercise in a fiber type specific manner. The fast-twitch SVL showed a 35% decrease in the maximal rate of Ca2+ uptake (Vmax) and a significantly lower Km while the slow soleus and fast DVL were unaltered. The time course of Ca2+ uptake, and the peak amount of Ca2+ sequestered was not altered by exercise in any of the muscles studied. The homogenates from the exercise-trained soleus muscles exhibited an increased ability to retain Ca2+ and in this capacity became more like fast muscle. 相似文献