首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proper timing of activities is one of the principal challenges faced by most organisms. Organisms need to account for various aspects in decision making like avoiding inordinate risks, synchronizing with resource availability, or finding mates. We provide analytical and simulation models to investigate the influence of life expectancy, resource competition and unpredictable environmental conditions (environmental uncertainty) on the evolutionarily stable distribution of emergence times in organisms depending on seasonally available resources. We focus on the partitioning of total phenotypic variance in emergence times into 1) genetic variance in mean emergence times between lineages and 2) environmental trait variance that determines the intra‐lineage variance in the timing of emergence. Both, life expectancy of organisms and intensity of competition severely influence the evolutionary response to environmental uncertainty. Our main findings can be summarized as follows: 1) in general diversifying bet hedging (environmental trait variance) is the adequate mechanism to reduce the risk arising from environmental uncertainty while conservative bet hedging, i.e. delaying emergence into ‘safe’ phases of the season is restricted to short lived organisms and to situations with vanishing competition. 2) Environmental trait variance increases with increasing environmental uncertainty whereas 3) significant genetic variance evolves only under severe resource competition; it is driven by selection for an ideal free distribution of emergence times. 4) The level of genetic variance evolving declines with increasing life expectancy of organisms. 5) With sufficiently short life expectancy evolutionary branching and coexistence of distinctly different emergence strategies occurs; the number of co‐occurring strategies is determined by the level of environmental uncertainty. Our model provides cues for understanding how different ecological factors contribute and interact to shape the evolution of emergence strategies.  相似文献   

2.
Summary The evolutionarily stable (or ESS) emergence schedule for males of univoltine butterflies is analysed in an environment in which the female emergence schedule fluctuates stochastically between years. The ESS emergence curve, computed using the mutant invadability criterion, is shown to be the one that maximizes mean logarithmic lifetime mating success in the population in which it dominates. If males have accurate information about the female emergence schedule within each year, their emergence curve would evolve to the one predicted by a deterministic game model. The male emergence curve would then shift between years, closely following year to year changes in the female emergence pattern. If, instead, males have uncertainty about the female emergence schedule, the ESS male emergence curve becomes broader than the one predicted by the deterministic game model and will not track the between-year fluctuation of female emergence well. In a special case, we show how the between-year variation of mean emergence date, the variance of emergence date, the sexual difference in mean emergence dates (protandry) and the between-year correlation of mean emergence dates of both sexes should change with the degree of accuracy of information available to males.  相似文献   

3.
Summary The occurrence of multiple parasitoid emergence from individual hosts was observed on numerous occasions. Characteristically such a phenomenon is extremely rare. In the observed instances of successful multiple parasitism of Autographa californica the parasitoid life history attributes of partial host consumption, gregariousness and timing of host parasitism are suggested as traits which contributed to certain species being able to coexist within individual hosts.Oregon State University, Agricultural Experiment Station Technical Paper No. 6239  相似文献   

4.
Odonata have a strong potential as model organisms for testing ecological and evolutionary hypotheses because of their short life history, relative ease and cost-effectiveness of care. Unfortunately, very few studies have examined how to create a semi-natural environment for odonates, limiting the biological validity of laboratory manipulation. To better study odonate life cycle and behaviour under controlled conditions, we designed a large net cage that imitated the natural terrestrial as well as aquatic habitat of the damselfly Lestes sponsa (Hansemann, 1823). This species is thought to be capable of submerged oviposition, an unusual behaviour in odonates. We compared multiple variables across natural conditions and the net cage. We demonstrated that between-year variability under natural conditions was generally greater than variability between natural and artificial environments. Overall, semi-natural conditions did not substantially change the L. sponsa life cycle (including the unique behaviour of submerged oviposition), suggesting that results from the net cage are likely generalisable to the field.  相似文献   

5.
南京地区落叶栎林木本植物叶物候研究   总被引:7,自引:1,他引:6       下载免费PDF全文
叶物候参数长期以来被认为与植物的碳获取的最大化有关,能反映物种的资源利用策略。温带地区因为寒冷冬天的限制,延长叶寿命成为一些物种进行生长发育和繁衍的基础。为探讨叶寿命延长的可能途径(早出叶、晚落叶,或两者兼有),该研究以南京地区两个落叶栎(Quercus spp.)林为研究对象,观测了其中木本植物的出叶物候、落叶物候,并分析了它们与叶寿命之间的关系。结果发现:1)不同物种的出叶开始时间相差较大,出叶早的物种早结束出叶过程;2)不同物种的落叶开始时间相差较大,早开始落叶的物种,落叶持续时间较长,落叶结束时间则相对集中。3)相关分析和回归分析都表明,叶寿命与出叶时间和落叶时间显著关联,但早出叶对叶寿命的延长可能更为重要,因为早出叶相对于晚落叶在物种资源利用上比较具有优势。4)不同物种的出叶时间和落叶时间没有显著相关,可能因为出叶过程和落叶过程是由不同的启动因子引起。这说明延长叶寿命不一定同时通过早出叶和晚落叶来达到。  相似文献   

6.
Dahl J  Peckarsky BL 《Oecologia》2003,137(2):188-194
Densities and species composition of predators could affect morphological defences, larval development and the timing of emergence of their prey. To address this issue we studied the morphology and life history of an ephemerellid mayfly, Ephemerella invaria, from two streams in a deciduous forested drainage basin in central New York. Both streams contained predatory fish, but densities and species composition of fish differed. A field survey provided evidence that Ephemerella inhabiting a stream with 10 fish species and high relative densities of fish emerged several weeks earlier and at smaller sizes than Ephemerella inhabiting a nearby tributary with ~2 fish species and low relative densities of fish. However, the two populations of mayflies showed no differences in defensive morphology or growth rates. In laboratory rearing experiments, we exposed Ephemerella larvae from these two locations to fish chemical cues or control water (no fish) over 2 months to test whether differences in life histories could be attributed to fish. Fish cues induced faster larval development, but also smaller size of mature Ephemerella individuals from both high and low predator locations. Although shorter development times in more dangerous environments could increase larval survival, smaller size of females results in a fecundity cost associated with this life history shift. Consistent with the field studies, laboratory rearing experiments revealed no effects of fish cues on Ephemerella's morphological defences. These data suggest that variation in the density or species composition of predators may favour the evolution of developmental plasticity to reduce mortality in the larval environment.  相似文献   

7.
Abstract The timing of life‐history events in insects can have important consequences for both survival and reproduction. For insect herbivores with complex life histories, selection is predicted to favor those combinations of traits that increase the size at metamorphosis while minimizing the risk of mortality from natural enemies. Studies quantifying selection on life‐history traits in natural insect herbivore populations, however, have been rare. The purpose of this study was to measure phenotypic selection imposed by elements of the first and third trophic levels on variation in two life‐history traits, the timing of egg hatch and pupal mass, in a population of oak‐feeding caterpillars, Psilocorsis quercicella (Lepidoptera: Oecophoridae). Larvae were collected from the field throughout each of two generations per year for three years and reared to determine the effects of the date of egg hatch on both the risk of attack from parasitoids and the pupal mass of the survivors. The direction and strength of phenotypic selection attributed to aspects of the first and third trophic levels, as well as their combined effects, on the date of egg hatch was measured for each of the six generations. Heritabilities of and genetic correlations between pupal mass and the date of adult emergence from diapause (the life‐history trait expected to have the largest influence on the timing of egg hatch, and thus larval development) were estimated from laboratory matings. In four of the six generations examined, significant directional selection attributed to the first trophic level was detected, always favoring early‐hatching cohorts predicted to experience higher leaf quality than late‐hatching cohorts. Directional phenotypic selection by the third trophic level was detected in only one of three years, and in that year the direction of selection was in opposite directions during the two successive generations. The combined effect of selection by both trophic levels indicated that the third trophic level acted to either reduce or enhance the more predictable pattern of selection attributed to the first trophic level. In addition, I found evidence of truncation selection acting to increase the mean and decrease the variance of pupal mass during the pupa‐adult transition in the laboratory. Pupal mass and diapause duration were found to vary significantly among full‐sibling families; upper bounds for heritability estimates were 0.57 and 0.30, respectively. Furthermore, these two traits were found to be positively genetically correlated (families with larger pupae had longer diapause durations), resulting in a fitness trade‐off, because larger pupae enjoy higher survival through metamorphosis and female fecundity but emerge later, when average leaf quality for offspring is generally poorer.  相似文献   

8.
Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment‐specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2‐5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.  相似文献   

9.
Several long‐standing hypotheses have been proposed to explain latitudinal patterns of life‐history strategies. Here, we test predictions of four such hypotheses (seasonality, food limitation, nest predation and adult survival probability) by examining life‐history traits and age‐specific mortality rates of several species of thrushes (Turdinae) based on field studies at temperate and tropical sites and data gathered from the literature. Thrushes in the genus Catharus showed the typical pattern of slower life‐history strategies in the tropics while co‐occuring Turdus thrushes differed much less across latitudes. Seasonality is a broadly accepted hypothesis for latitudinal patterns, but the lack of concordance in latitudinal patterns between co‐existing genera that experience the same seasonal patterns suggests seasonality cannot fully explain latitudinal trait variation in thrushes. Nest‐predation also could not explain patterns based on our field data and literature data for these two genera. Total feeding rates were similar, and per‐nestling feeding rates were higher at tropical latitudes in both genera, suggesting food limitation does not explain trait differences in thrushes. Latitudinal patterns of life histories in these two genera were closely associated with adult survival probability. Thus, our data suggest that environmental influences on adult survival probability may play a particularly strong role in shaping latitudinal patterns of life‐history traits.  相似文献   

10.
Density dependence influences northern bobwhite (Colinus virginianus) reproduction and overwinter mortality. However, the functional forms of these density-dependent relationships or the factors that influence them during the annual life cycle events of this bird are not clear. We used a systems analysis approach with a compartment model based on difference equations (Δt = 3 months) for bobwhites in South Texas to simulate population behavior using 16 different functional forms of density-dependent production and overwinter mortality. During the reproductive season, a weak linear density-dependent relationship resulted in the longest population persistence (up to 100.0 yr), whereas a reverse-sigmoid density-dependent relationship had the worst population persistence (2.5–3.5 yr). Regarding overwinter mortality, a sigmoid or weak linear density-dependent relationship and a weak linear or no density-dependent reproduction relationship had the longest population persistence (87.5–100.0 yr). Weak linear density-dependent reproduction with either sigmoid or weak linear overwinter mortality produced stable fall population trends. Our results indicated that density dependence may have a greater influence on overwinter survival of bobwhites than previously thought. Inclusion of density-dependent functional relationships that represent both density-dependent reproduction and overwinter mortality, were critical for our simulation model to function properly. Therefore, integrating density-dependent relationships for both reproductive and overwinter periods of the annual cycle of bobwhite life history events is essential for conducting realistic bobwhite population simulation analyses that can be used to test different management scenarios in an integrated and interdisciplinary manner. © 2012 The Wildlife Society.  相似文献   

11.
Demographic buffering allows populations to persist by compensating for fluctuations in vital rates, including disease‐induced mortality. Using long‐term data on a badger (Meles meles Linnaeus, 1758) population naturally infected with Mycobacterium bovis, we built an integrated population model to quantify impacts of disease, density and environmental drivers on survival and recruitment. Badgers exhibit a slow life‐history strategy, having high rates of adult survival with low variance, and low but variable rates of recruitment. Recruitment exhibited strong negative density‐dependence, but was not influenced by disease, while adult survival was density independent but declined with increasing prevalence of diseased individuals. Given that reproductive success is not depressed by disease prevalence, density‐dependent recruitment of cubs is likely to compensate for disease‐induced mortality. This combination of slow life history and compensatory recruitment promotes the persistence of a naturally infected badger population and helps to explain the badger's role as a persistent reservoir of M. bovis.  相似文献   

12.
1. The North American beaver has been studied as a model ecosystem engineer for many decades. Previous studies have documented physical, chemical and biological impacts attributed to beaver engineering in both aquatic and terrestrial environments. This study focused on the effects of ecosystem engineering by beavers on life histories of a common mayfly and on the potential consequences for mayfly populations. 2. We studied 18 montane beaver ponds of varying size and shape in western Colorado near the Rocky Mountain Biological Laboratory. Our goal was to test whether variation in beaver pond morphology (pond size and shape) explains downstream changes in stream temperature, mayfly size and timing of emergence. 3. Downstream water temperatures varied predictably with pond morphology, being colder downstream of high‐head dams and warmer downstream of low‐head dams. Pond morphology was also a significant predictor of variation in the size of mature female Baetis bicaudatus (the most abundant mayfly), with larger females emerging downstream of high‐head dams and smaller females downstream of low‐head dams. The size of male B. bicaudatus was not significantly related to pond morphology or stream temperature. There was no relationship between pond morphology and variation in the timing of emergence of Baetis (males or females) between upstream and downstream reaches. 4. Our results have implications for the effects of beaver ponds on Baetis individual fitness because large Baetis females are more fecund. Therefore, predictable female size variation associated with beaver pond morphology makes it possible to model the effects of beaver activity on local contributions of Baetis to the regional pool of reproductive adults at the catchment scale. Additionally, predictable changes in the size of emerging mayflies may have important consequences for the magnitude of aquatic to terrestrial resource subsidies in beaver‐modified systems.  相似文献   

13.
In organisms with complex life cycles living in seasonal environments, the synchronisation of phenological events is important from the ecological and evolutionary perspectives. Life history transitions should be synchronised to a greater degree at northern latitudes. We quantified hatching and emergence timing and synchrony in the obligate univoltine damselfly Lestes sponsa along a latitudinal gradient covering its entire north–south range in Europe. In our first experiment, populations from different latitudes were grown in separate climate chambers simulating temperature and photoperiod conditions occurring at their sites of origin. Northern populations expressed early and high synchronous hatching and emergence, central populations intermediate, and southern populations late and low synchronous hatching and emergence. This pattern was expressed at both population and full‐sibling family levels, indicating stronger selection for timing and synchronisation in the north compared to the south. In our second experiment, populations from all latitudes were reared in conditions simulating an average temperature and photoperiod over the latitudinal gradient. Interestingly, the pattern of timing and synchronisation was reversed with respect to latitude when compared to the pattern shown in the first experiment, indicating the importance of environmental factors in shaping phenological events. Our results indicate strong selection for timing and synchronisation of life history events at northern latitudes, caused by time constraints. Our results also show that it is important to use as natural conditions as possible in experiments on life history shifts in organisms with complex life cycles in order to achieve a correct understanding of these shifts.  相似文献   

14.
Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life‐history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life‐history strategy, based on growth‐mortality trade‐offs, from seedling to adult tree for 47 species in a tropical forest. Species’ life‐history strategies remained consistent across stages: fast‐growing species had higher mortality than slow‐growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast‐growing species tended to suffer greater CNDD than slow‐growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities.  相似文献   

15.
This article discusses the application of statistical techniques in the analysis of the life table. Using a piece-wise continuous model for the mortality pattern, the maximum likelihood estimates of the probabilities of dying, qi in a life table are obtained. From the form of the covariance matrix it is deduced that the estimates are asymptotically independent. The distribution of qi and its large sample variance are also derived.  相似文献   

16.
For organisms living in unpredictable environments, timing important life‐history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among‐ and within‐season uncertainty. We use a modelling approach that considers among‐season dormancy and within‐season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among‐season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter‐intuitively select for less risk‐spreading within the season. Furthermore, strong priority effects select for earlier within‐season germination phenology which in turn increases the need for bet hedging through among‐season dormancy.  相似文献   

17.
Many organisms spend the unfavourable part of the year, such as the winter season, in diapause or dormancy and reproduce in spring shortly after emergence. Reserves are acquired prior to diapause to cover metabolic costs and in some species also reproduction (capital breeding) directly after diapause. Storage is then a component of future reproduction, and capital breeders consequently pay a pre-breeding cost of reproduction as they risk dying while obtaining and carrying the reserves. How large should the reserves be, and to what extent should optimal storage, and thereby timing of diapause, depend on predation risk and reproductive strategy? We present a general and simplistic life history model of an arthropod (e.g. crustaceans or insects) that is exposed to background mortality risk when it accumulates reserves before diapause. The model optimizes diapause timing and resultant reserves for income, mixed and capital breeders, and predicts how mortality risk affects the degree of capital breeding. For income breeders, timing of diapause is insensitive to the risk while obtaining reserves as they, regardless of risk, acquire the minimum amount needed to survive the winter. For capital breeders, the higher the risk the earlier the diapause and less is consequently stored. Mixed breeders diapause late and store as much as pure capital breeders when exposed to low risk, but behave as income breeders and diapause early when mortality is high. Our model shows that the degree of capital breeding impacts phenology of diapause in a risk-dependent manner. This prediction should impact how diapause timing is thought of across a wide range of taxa, including the much studied marine copepods. Timing of diapause, including triggers and cues, can only be understood when the diversity of reproductive strategies and the adaptive value of storage is taken into account.  相似文献   

18.
Life history strategies often shape biological interactions by specifying the parameters for possible encounters, such as the timing, frequency, or way of exposure to parasites. Consequentially, alterations in life‐history strategies are closely intertwined with such interaction processes. Understanding the connection between life‐history alterations and host–parasite interactions can therefore be important to unveil potential links between adaptation to environmental change and changes in interaction processes. Here, we studied how two different host–parasite interaction processes, oral and hemocoelic exposure to bacteria, affect various life histories of the Glanville fritillary butterfly Melitaea cinxia. We either fed or injected adult butterflies with the bacterium Micrococcus luteus and observed for differences in immune defenses, reproductive life histories, and longevity, compared to control exposures. Our results indicate differences in how female butterflies adapt to the two exposure types. Orally infected females showed a reduction in clutch size and an earlier onset of reproduction, whereas a reduction in egg weight was observed for hemocoelically exposed females. Both exposure types also led to shorter intervals between clutches and a reduced life span. These results indicate a relationship between host–parasite interactions and changes in life‐history strategies. This relationship could cast restrictions on the ability to adapt to new environments and consequentially influence the population dynamics of a species in changing environmental conditions.  相似文献   

19.
In this study we examined the influences that differing life history strategies and population structures at the time of pesticide exposure have on population susceptibility to pesticides. We used life table data and a matrix projection model to incorporate combinations of mortality (lethal effect) and reductions in fecundity (sublethal effect) into estimates of intrinsic population growth rates (r) for a predator, the seven-spot lady beetle, Coccinella septempunctata L., and its prey, the pea aphid, Acyrthosiphon pisum Harris, and an aphid parasitoid, Diaeretiella rapae (M’Intosh). All three species exhibited differences in key life history variables. The aphid had the highest r and shortest generation time, the ladybeetle had the lowest r and longest generation, while the parasitoid exhibited intermediate life history characteristics. When the model was run with populations started as neonates (aphids) or eggs (lady beetle, parasitoid) for each species, ladybeetle populations were much more susceptible than either aphid or parasitoid populations 30 days after simulated exposure to a pesticide. For example, 50% mortality and a 50% reduction in fecundity resulted in a population headed toward extinction (negative r) for the ladybeetle while the parasitoid population grew exponentially (positive r) even after sustaining 70% mortality and a 70% reduction in fecundity. The aphid species maintained exponential growth after sustaining 80% mortality and an 80% reduction in fecundity. Thus, differences in life history variables accounted for the greater susceptibility of the ladybeetle to a pesticide than its aphid prey or the parasitoid over a set time interval. These differences in susceptibility were greatly reduced when the model was run starting with a mixed age/stage population (the stable age distribution) for each species indicating that population structure at the time of pesticide exposure plays a critical role in population susceptibility. These results suggest that life history attributes as well as population structure at the time of pesticide exposure both play a major role in population susceptibility to pesticides, highlighting the need to explicitly consider differences in life history variables among species when calculating compatibility of pesticides and biological control agents as well as the population structure of beneficial species at the time of pesticide application.  相似文献   

20.
Matrix population models, elasticity analysis and loop analysis can potentially provide powerful techniques for the analysis of life histories. Data from a capture–recapture study on a population of southern highland water skinks (Eulamprus tympanum) were used to construct a matrix population model. Errors in elasticities were calculated by using the parametric bootstrap technique. Elasticity and loop analyses were then conducted to identify the life history stages most important to fitness. The same techniques were used to investigate the relative importance of fast versus slow growth, and rapid versus delayed reproduction. Mature water skinks were long‐lived, but there was high immature mortality. The most sensitive life history stage was the subadult stage. It is suggested that life history evolution in E. tympanum may be strongly affected by predation, particularly by birds. Because our population declined over the study, slow growth and delayed reproduction were the optimal life history strategies over this period. Although the techniques of evolutionary demography provide a powerful approach for the analysis of life histories, there are formidable logistical obstacles in gathering enough high‐quality data for robust estimates of the critical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号