共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The characteristics of the serotonin (5-HT) output in the dorsal and median raphe nuclei of the rat were studied using in vivo microdialysis. The basal output of 5-HT increased after KC1 was added to the perfusion fluid. In contrast, neither the omission of calcium ions nor the addition of 0.5 nM tetrodotoxin affected dialysate 5-HT or 5-hy-droxyindoleacetic acid (5-H1AA). Reserpine did not decrease the output of 5-HT and 5-HIAA 24 h later and p-chloroamphetamine increased 5-HT in both vehicle- and reserpine-treated rats severalfold. 8-Hydroxy-2-(di-n-pro-pylamino)tetralin (8-OH-DPAT), at 1 or 10 μM, perfused into the raphe did not change the outputs of 5-HT or 5-HIAA. Higher doses (0.1, Land 10 mM) increased extracellular 5-HT in the raphe, probably via an inhibition of uptake. In animals bearing two probes (raphe nuclei and ventral hippocampus), only the 10 vaM dose of 8-OH-DPAT perfused into the raphe decreased the hippocampal output of 5-HT and 5-HIAA. The systemic injection of 0.1 mg/kg 8-OH-DPAT decreased dialysate 5-HT and 5-HIAA in the raphe and hippocampus. These results suggest that extracellular 5-HT in raphe nuclei originates from a cytoplasmic pool and is not dependent on either nerve impulse of 5-HT neurons or local activation of 5-HT1A receptors. 相似文献
2.
Roberto Invernizzi Mirjana Carli Angelo Di Clemente Rosario Samanin 《Journal of neurochemistry》1991,56(1):243-247
Following administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.04-5.0 micrograms/0.5 microliter) in the raphe nucleus dorsalis (DR) or medianus (MR), the synthesis of serotonin (5-HT), as assessed by the accumulation of 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition, was measured in various regions of the rat CNS. At all doses, 8-OH-DPAT in the DR significantly reduced 5-HTP accumulation in the striatum, nucleus accumbens, cortex, and prefrontal cortex, whereas even the highest dose had no effect in the hippocampus, hypothalamus, and spinal cord. One microgram of 8-OH-DPAT in the MR significantly reduced 5-HTP accumulation in the nucleus accumbens and prefrontal cortex, and 5 micrograms had an effect in all the areas except the striatum and spinal cord. One and 5 micrograms of 8-OH-DPAT, administered in either the DR or MR, did not significantly modify the accumulation of dihydroxyphenylalanine in the striatum and nucleus accumbens. The results confirm that DR and MR have different sensitivities to 5-HT1A receptor agonists, and that activation of 5-HT1A receptors in these nuclei produces different effects on 5-HT synthesis in different brain regions. 相似文献
3.
Tryptamine Concentrations in Areas of 5-Hydroxytryptamine Terminal Innervation After Electrolytic Lesions of Midbrain Raphe Nuclei 总被引:3,自引:1,他引:2
The possible existence of tryptamine-containing neurons originating in the midbrain raphe is suggested by several reports of tryptamine-mediated responses to electrical stimulation of the raphe nuclei. To assess this hypothesis, we have investigated the effects of electrolytic lesions of the median and dorsal raphe nuclei on striatal, hypothalamic, and hippocampal concentrations of tryptamine, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid. In addition, the rat striatal tryptophan concentrations were also determined. No changes in the concentrations of tryptamine were observed at 1 or 2 weeks after lesioning the dorsal and median raphe nuclei, at which time the other 5-hydroxyindoles were markedly reduced; furthermore, no reductions were observed in tryptamine concentrations in the striatum, hypothalamus, or hippocampus of rats pretreated with a monoamine oxidase inhibitor. The only change observed in these rats was a limited increase in striatal tryptamine and tryptophan observed at 1 day after lesioning. The results indicate that tryptamine concentration is independent of the integrity of 5-HT-containing neurons of the midbrain raphe nuclei. Furthermore, if tryptamine-containing neurons that have terminal projections to the striatum, hypothalamus, and hippocampus exist, their cell bodies are located in regions outside the dorsal and median raphe nuclei. Another possibility could be that tryptamine is located in glial cells. 相似文献
4.
Sylvie Raison Colette Rousset Jean-François Pujol Dinah Weissmann 《Journal of neurochemistry》1996,67(5):2124-2133
Abstract: Tryptophan hydroxylase distribution was examined across the nuclei raphe dorsalis, medianus, and pontis of the adult rat, under basal conditions and 2 days after a single injection of p -chlorophenylalanine, an irreversible tryptophan hydroxylase inhibitor. Tryptophan hydroxylase-expressing cells were numbered in transverse sections processed for immunohistochemistry, and the area of tryptophan hydroxylase distribution was delineated in adjacent sections transferred onto nitrocellulose and processed for immunoautoradiography. Two distinct areas were visualized: an inner zone, corresponding to the area displaying tryptophan hydroxylase-immunoreactive cells (so-called somatic area), and an outer zone, here called perisomatic, devoid of perikarya yet rich in tryptophan hydroxylase-positive neuropil in the histological sections. After treatment with p -chlorophenylalanine, a significant decrease in the number of tryptophan hydroxylase-immunoreactive cells could be observed only in the rostral raphe dorsalis, particularly within its ventromedian and dorsomedian subdivisions. In all raphe nuclei, the topological reconstruction of the somatic area was not modified. Based on the densitometric measurements in the immunoautoradiographs, however, a dramatic decrease in the content, concentration, and volume of expression of tryptophan hydroxylase could be documented in the three raphe nuclei. Detailed analysis of these results led to the conclusion that (a) tryptophan hydroxylase expression is differentially regulated in different serotoninergic cell body subpopulations of the raphe, some of which are more sensitive to p -chlorophenylalanine, and (b) distribution of tryptophan hydroxylase protein is modified also in the somatodendritic area in all raphe nuclei. 相似文献
5.
In Vivo Measurement Using Microdialysis of the Release and Metabolism of 5-Hydroxytryptamine in Raphe Neurones Grafted to the Rat Hippocampus 总被引:1,自引:0,他引:1
The overflow and metabolism of serotonin (5-hydroxytryptamine; 5-HT) from transplants of embryonic medullary and mesencephalic raphe neurones in the previously 5-HT-denervated hippocampus have been analyzed in vivo using intracerebral dialysis. The average density of 5-HT-immunoreactive fibres in the grafted hippocampus was less than in nonlesioned hippocampus. Nonetheless, both basal and potassium-stimulated levels of 5-HT in the dialysates were restored to approximately normal after transplantation of medullary raphe cells, whereas mesencephalic implants resulted in over twice the 5-HT output observed in control hippocampus. However, 5-hydroxyindoleacetic acid (5-HIAA) overflow was increased only after grafting of mesencephalic raphe and then only to normal levels; medullary implants, by contrast, failed to enhance 5-HIAA output above that from lesion-only hippocampus. The evidence of a relative hyperactivity of the grafted neurones may explain the disproportionate improvements in various lesion-induced behavioural deficits after grafting of nervous tissue. In addition, differences in the presynaptic regulation of 5-HT release and metabolism are also apparent in the transplants; these variations are dependent on the precise origin of the serotoninergic cells. 相似文献
6.
Previously, we demonstrated an autoregulatory feedback loop in the rat carotid body (CB), involving presynaptic GABA(B) receptor-mediated activation of the background K(+) channel TASK-1. Here, we examined the effects of the selective GABA(B) receptor agonist baclofen on K(+) currents in immortalised adrenomedullary chromaffin (MAH) cells, which share the same sympathoadrenal lineage as CB type I cells. Under symmetrical K(+) conditions, 50 microM baclofen enhanced a K(+) current which was linear and reversed close to 0 mV. Under physiological K(+) conditions, baclofen enhanced outward K(+) current and caused membrane hyperpolarisation, effects inhibited by 100 nM CGP 55845. Current enhancement was virtually abolished in the presence of 300 microM Zn(2+), a selective inhibitor of TASK-1. When recording membrane potential from MAH cells in clusters, hypoxic depolarisation was augmented by 100 nM CGP 55845. These data demonstrate that GABA(B) receptors mediate autoreceptor feedback in the adrenal medulla presumably via TASK-1, demonstrating a common autoregulatory feedback pathway in neurosecretory, chemosensitive cells. 相似文献
7.
8.
Angelita Trevino Amy Wolf Astra Jackson Tiffany Price Lynda Uphouse 《Hormones and behavior》1999,35(3):215-223
The effects of bilateral VMN infusion with the 5-HT1A receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 200, 1000, or 2000 ng), on lordosis behavior were examined in hormonally primed ovariectomized rats. When rats were given a single injection with 25 microg estradiol benzoate followed 48 h later with 500 microg progesterone, inhibition of lordosis behavior was evident at all doses of 8-OH-DPAT. However, when rats were treated with 25 microg estradiol benzoate followed 7 days later with a second injection of 25 microg estradiol benzoate and then progesterone, none of the doses of 8-OH-DPAT effectively inhibited lordosis behavior. In some rats, cannulae were located near the most rostral portion of the VMN. In these rats, there was no effect of the second estrogen treatment on the response to 8-OH-DPAT. Therefore, a second experiment was performed to specifically evaluate the effects of two estradiol benzoate treatments on the response to bilateral 8-OH-DPAT infusion in the rostral VMN. In contrast to the reduced effectiveness of the 8-OH-DPAT infusion in the mid to caudal VMN in rats given two injections with estradiol benzoate, 2000 ng 8-OH-DPAT continued to effectively inhibit lordosis behavior following the 5-HT1A receptor agonist's infusion into the more rostral areas. These findings are discussed in relation to earlier studies in which the potency, but not the efficacy, of 8-OH-DPAT was reduced following systemic treatment with the 5-HT1A receptor agonist. 相似文献
9.
Recent evidence has shown in membrane preparations that the binding of one ligand to its receptor is able to modify the binding parameters of a second receptor (receptor-receptor interactions), allowing the modulation of incoming signals onto a neuron. To further understand the -amino-butyric acid (GABA)-dopamine (DA) interactions in the neostriatum we have carried out experiments to explore whether an activation of the GABAA receptor could affect the binding characteristics of the D2 DA receptor in membrane preparations of the rat neostriatum. The results show that GABA (30–100 nM) significantly increases the dissociation constant of the high affinity (KH) D2 DA binding site (labelled with the selective D2 DA receptor antagonist [3H]raclopride and that such an effect is fully counteracted by the GABAA receptor antagonist bicuculline (1 M). It is suggested that such putative GABAA/D2 receptor-receptor interactions may take place in the somato-dendritic membrane of the striato-pallidal GABA neurons and that it may modulate the inhibitory effects of DA on these neurons, mediated via D2 receptors. 相似文献
10.
《Somatosensory & motor research》2013,30(3):237-247
Cortical foci in which stimulation produced movement in either the forelimb or hindlimb were isolated in rats. In each experiment, two foci were selected: one for movement in the forelimb, and the other in the hindlimb. Stimulation was subsequently reduced in order to avoid eliciting a movement, and the effects of this stimulation on activity of gracile and cuneate neurons were examined. Both excitation and inhibition were observed and were found to be arranged in a somatotopic manner. Excitation was almost exclusively obtained when the receptive field (RF) of a given neuron corresponded to the body surfaces overlying the joints involved in the cortically evoked movement. A high percentage of neurons with RFs on body surfaces corresponding to, or adjacent to, the region of cortically induced movement were inhibited, while the activity of neurons with RFs distant to the site of movement was seldom modified. These results suggest that cortical influences exerted on the dorsal column nuclei (DCN) in rats are organized in a somatotopic manner. 相似文献
11.
Among the characterized 5-HT receptors of the central nervous system, the type 3 receptor subtype (5-HT3R) is the only one known to be a ligand-gated ion channel. Its early pharmacological characterization and mapping by radioligand binding autoradiography suggested that this receptor may, among other actions, regulate dopamine release in the nigro-striatal pathway and reduce alcohol consumption in experimental animals while antagonists of this receptor have been reported to treat anxiety disorders. Following the cloning of this receptor in 1991, direct cellular localization was made possible by in situ hybridization and immunohistochemical analysis. Here we summarize our recent efforts showing that 5-HT3R-expressing neurons are mainly GABA containing cells in the rat neocortex, olfactory cortex, hippocampus, and amygdala which also often contain chole-cystokinin (CCK) immunoreactivity. These results provide a means to unify some of the initial pharmacological observations. 相似文献
12.
5-HT(3) (serotonin type 3) receptors are targets of antiemetics, antipsychotics, and antidepressants and are believed to play a role in cognition. Nevertheless, contrasting results have been obtained with respect to their functions in the CNS and in the control of transmitter release. We used rat hippocampal neurons in single-neuron microcultures to identify the roles of presynaptic 5-HT(3) receptors at central synapses. 5-HT (10 microm) caused a transient > 10-fold increase in the frequency of miniature inhibitory postsynaptic currents without affecting amplitudes or kinetics. This effect was abolished by tropisetron (30 nm) and when Ca(2+) channels were blocked by 100 microm Cd(2+) it was mimicked and occluded when neurons were depolarized by 20 mm, but not 10 mm, K(+). Thus, activation of presynaptic 5-HT(3) receptors increased spontaneous GABA release by causing depolarization and opening of voltage-gated Ca(2+) channels. In microculture neurons, 5-HT transiently reduced action potential-evoked inhibitory autaptic currents by > 50%; this effect was blocked by tropisetron and mimicked by 20 mm, but not 10 mm, K(+). Miniature excitatory postsynaptic currents were not altered by 5-HT. Excitatory autaptic currents were tonically reduced, an effect attenuated by 5-HT(1A) antagonists. Thus, presynaptic 5-HT(3) receptors control GABA, but not glutamate, release and mediate opposite effects on spontaneous and action potential-dependent release. 相似文献
13.
Steven M. Bromidge Steven Dabbs David T. Davies Susannah Davies D. Malcolm Duckworth Ian T. Forbes Angela Gadre Peter Ham Graham E. Jones Frank D. King Damian V. Saunders Kevin M. Thewlis Deepa Vyas Thomas P. Blackburn Vicky Holland Guy A. Kennett Graham J. Riley Martyn D. Wood 《Bioorganic & medicinal chemistry》1999,7(12):5086
A model series of 5-HT2C antagonists have been prepared by rapid parallel synthesis. These N-substituted phenyl-N′-pyridin-3-yl ureas were found to have a range of 5-HT2C receptor affinities and selectivities over the closely related 5-HT2A receptor. Extrapolation of simple SAR, derived from this set of compounds, to the more active but synthetically more complex 1-(3-pyridyl-carbamoyl)indoline series allowed us to target optimal substitution patterns and identify potent and selective 5-HT2C/2B antagonists. 相似文献
14.
Irving HR Tan YY Tochon-Danguy N Liu H Chetty N Desmond PV Pouton CW Coupar IM 《Life sciences》2007,80(13):1198-1205
Serotonin receptors are potential targets for treating functional bowel disorders. This study investigated the functional roles and expression of the 5-HT4 and the 5-HT7 receptor, which coexist in human colon circular smooth muscle. 5-HT3 receptor expression was also investigated. Part of the relaxant response to 5-HT was due to activation of 5-HT4 receptors as the apparent pKB value of the selective 5-HT4 antagonist, GR 113808, was 9.36. 5-HT4 mRNA levels were low in five tissues and undetectable in four others, but all responded to 5-HT with an EC50 value of 102.54+/-19.32 nM. The contribution of 5-HT7 receptors to the response was not readily demonstrated using the selective 5-HT7 antagonist, SB-269970, as its apparent pKB value of 7.19 (5-HT4 block with 1 microM GR 113808) was lower than the value obtained using the 5-HT7 guinea pig ileum assay (8.62). Nevertheless, the 5-HT7 receptor was expressed more consistently than the 5-HT4, but at similar levels. The 5-HT(3Ashort) and 5-HT(3B) subunits were co-expressed at similar levels, but the 5-HT(3Along) subunit was detected in only five of the nine samples tested. The findings show that 5-HT4-induced relaxation occurs at low to undetectable levels of tissue mRNA, as measured by qPCR. Although 5-HT7 receptor mRNA is detected at low, but consistent levels, the functional activity of this receptor is not readily identified given the currently available drugs. 相似文献
15.
Doleviczényi Z Vizi ES Gacsályi I Pallagi K Volk B Hársing LG Halmos G Lendvai B Zelles T 《Neurochemical research》2008,33(11):2364-2372
In humans, serotonin (5-HT) has been implicated in numerous physiological and pathological processes in the peripheral auditory
system. Dopamine (DA), another transmitter of the lateral olivocochlear (LOC) efferents making synapses on cochlear nerve
dendrites, controls auditory nerve activation and protects the sensory nerve against overactivation. Using in vitro microvolume
superfusion techniques we tested 5-HT6 and 5-HT7 receptor antagonists whether they can influence dopamine (DA) release from the guinea-pig cochlea in control and in ischemic
conditions using currently available and new 5-HT6 and 5-HT7 antagonists and mixed antagonists, which were synthesized and characterized for the current study. While the 5-HT7 antagonist SB-258719 was ineffective, SB-271046, which blocks the 5-HT6 receptor, caused a significant increase in cochlear DA release what is contradictory with the excitatory nature of this type
of receptor. Moreover, the mixed 5-HT6/7 antagonist EGIS-12233 induced an even more pronounced increase in the resting DA release. To understand why the block of
an excitatory receptor results in an increase instead of a decrease in function, we investigated the possible involvement
of an indirect neural mechanism through an inhibitory system. In the presence of the GABAA receptor blocker bicuculline, EGIS-12233 failed to increase the release of DA, suggesting that the serotonin receptor modulation
of DA release from the lateral olivocochlear efferents in the cochlea was produced indirectly by decreasing the GABAergic
inhibitory tone on dopaminergic nerve endings. The mixed 5-HT7/D4 receptor antagonist EGIS-11983 significantly increased both the stimulation-evoked and the resting DA release, while the
selective D4 blocker L-741,741 alone had no significant effect. Ischemia, simulated by oxygen and glucose deprivation from
the perfusion solution had no action on the effect of the drugs. Drugs that can increase the release of DA from LOC terminals
in the cochlea may have a role in the treatment of sensorineural hearing loss. 相似文献
16.
Raul L 《Cellular and molecular neurobiology》2003,23(4-5):709-726
1. There is a general agreement concerning the key role of the baroreceptor reflex in blood pressure homeostasis. It is also well accepted that baroreceptor afferent messages are first integrated within the nucleus tractus solitarius (NTS) and that an excitatory amino acid, probably glutamate, is the principal neurotransmitter of corresponding afferents fibers. However, important points concerning the processing of baroreceptor messages within the NTS remain to be clarified, in particular the possible modulatory role of other neuroactive substances at this particular level in the medulla oblongata.2. In this context, the present review focuses on serotonin, and the possible facilitatory influence of NTS serotonergic afferents and receptors on the baroreceptor reflex arc. Relevant pharmacological, electrophysiological, immunohistochemical, and biochemical data, are presented and discussed. They can be summarized as follows.3. The selective destruction of the nodose ganglion-NTS serotonergic pathway produces a long-term increase in blood pressure variability, similar to that caused by baroreceptor denervation.4. Microinjection of picomolar doses of 5-HT into the NTS elicits the typical responses of baroreceptor activation.5. The cardiovascular effects elicited by local microinjections of specific agonists and antagonists into the NTS of intact rats and of animals that underwent nodose ganglionectomy indicate that the baroreceptor-like effects of locally administered 5-HT are mediated by the activation of postsynaptic 5-HT2 receptors.6. The medullary pathways which mediate NTS 5-HT2 receptor-evoked responses are similar to those involved in the baroreceptor reflex arc.7. Pharmacological and electrophysiological studies suggest that the cardiovascular effects of intra-NTS 5-HT involve the 5-HT2A receptor subtype expressed by NTS barosensitive neurons that receive polysynaptic vagal afferents.8. Intra-NTS microinjection of a subthreshold dose of DOI, a 5-HT2 receptor agonist, which, on its own, does not produce any cardiovascular changes, significantly enhances the bradycardiac component of the baroreflex.9. Altogether, the data summarized above show that, in the NTS, 5-HT acting at 5-HT2A receptors exerts a facilitatory influence on the baroreceptor reflex, especially on the cardiac component of this reflex.10. Convergent pharmacological and electrophysiological data indicate that, in the NTS, functional interactions between NMDA- and 5-HT2A-receptors coexpressed by the same neurons probably underlie the facilitatory influence of 5-HT upon the baroreceptor reflex.11. Under physiological conditions, the 5-HT2A receptor-mediated facilitatory modulation of the cardiovagal component of the baroreflex might be triggered by 5-HT released from nodose ganglion-NTS serotoninergic afferent neurons and/or for serotoninergic projections originating in raphe nuclei. The latter possibility might notably occur during recovery after physical exercise and/or during the freezing reaction in stressed animals. 相似文献
17.
The immediate and long-term effects of the selective serotonergic neurotoxin 5,7-dihydroxytryp-tamine (5,7-DHT) on rat striatal serotonergic neurons were examined after its intracerebroventricular administration using in vivo voltammetry. Extracellular concentration of 5-hydroxyindoles increased immediately following intracerebroventricular 5,7-DHT injection (200 g in 24 l, 18 min), peaked at 1.5-2 h, and returned to normal by 4 h. 5,7-DHT diffused to the contralateral striatum in detectable amounts 9 to 12 min after the start of injection and returned to basal levels by 1.5 h. Three to 6 days after 5,7-DHT lesions, 5-hydroxytryptophan administration produced an increase in striatal 5-hydroxyindoles that was greater than that produced in pre-lesioned rats. This effect was maximal at 14 to 17 days post-lesion, and remained even after 50 days. The short-term effect of 5,7-DHT may be attributable to increased serotonin release, inhibition of uptake, or monoamine oxidase inhibition. The long-term effect of 5,7-DHT lesions may attributable to increased synthesis of serotonin or decreased reuptake in remaining serotonergic neurons. 相似文献
18.
19.
Michel Belley Richard Sullivan Austin Reeves Jilly Evans Gary O'Neill Gordon Y. K. Ng 《Bioorganic & medicinal chemistry》1999,7(12):1351
A radioiodinated probe, [125I]-CGP 71872, containing an azido group that can be photoactivated, was synthesized and used to characterize GABAB receptors. Photoaffinity labeling experiments using crude membranes prepared from rat brain revealed two predominant ligand binding species at 130 and 100 kDa believed to represent the long (GABABR1a) and short (GABABR1b) forms of the receptor. Indeed, these ligand binding proteins were immunoprecipitated using a GABAB receptor-specific antibody confirming the receptor specificity of the photoaffinity probe. Most convincingly, [125I]-CGP 71872 binding was competitively inhibited in a dose-dependent manner by cold CGP 71872, GABA, saclofen, (−)-baclofen, (+)-baclofen and (
)-glutamic acid with a rank order and stereospecificity characteristic of the GABAB receptor. Photoaffinity labeling experiments revealed that the recombinant GABABR2 receptor does not bind [125I]-CGP 71872, providing surprising and direct evidence that CGP 71872 is a GABABR1 selective antagonist. Photoaffinity labeling experiments using rat tissues showed that both GABABR1a and GABABR1b are co-expressed in the brain, spinal cord, stomach and testis, but only the short GABABR1b receptor form was detected in kidney and liver whereas the long GABABR1a form was selectively expressed in the adrenal gland, pituitary, spleen and prostate. We report herein the synthesis and biochemical characterization of the nanomolar affinity [125I]-CGP 71872 and CGP 71872 GABABR1 ligands, and differential tissue expression of the long GABABR1a and short GABABR1b receptor forms in rat and dog. 相似文献
20.
Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain, loaded with [3H]serotonin ([3H]5-HT), superfused, and the electrically induced efflux of radioactivity was determined. The nonselective 5-HT receptor agonist 5-carboxamido-tryptamine (5-CT; 0.001 to 1 microM) inhibited the electrically stimulated [3H]5-HT overflow from raphe nuclei slices (IC50 of 3.34 +/- 0.37 nM). This effect of 5-CT on [3H]5-HT overflow was antagonized by the 5-HT7 receptor antagonist SB-258719 (10 microM) and the 5-HT(1B/1D) antagonist SB-216641 (1 microM), the IC50 values for 5-CT in the presence of SB-258719 and SB-216641 were 94.23 +/- 4.84 and 47.81 +/- 4.66 nM. The apparent pA2 values for SB-258719 and SB-216641 against 5-CT were 6.43 and 7.12, respectively. The inhibitory effect of 5-CT on [3H]5-HT overflow was weakly antagonized by 10 microM of WAY-100635, a 5-HT1A receptor antagonist (IC50 6.65 +/- 0.56 nM, apparent pA2 4.99). The antagonist effect of SB-258719 (10 microM) on 5-CT-evoked [3H]5-HT overflow inhibition was also determined in the presence of 1 microM SB-216641 or 1 microM SB-216641 and 10 microM WAY-100635, and additive interactions were found between the antagonists of 5-HT7 and 5-HT1 receptor subtypes. Addition of the Na+ channel blocker tetrodotoxin (1 microM) in the presence of SB-216641 (1 microM) and WAY-100635 (10 microM) attenuated the inhibitory effect of 5-CT on KCl-induced [3H]5-HT overflow. These findings indicate that 5-CT inhibits [3H]5-HT overflow from raphe nuclei slices of the rat by stimulation of 5-HT7 and 5-HT(1B/1D receptors, whereas the role of 5-HT1A receptors in this inhibition is less pronounced. They also suggest that 5-HT7 receptors are probably not located on serotonergic neurons and thus may serve as heteroreceptors in regulation of 5-HT release in the raphe nuclei. 5-CT (0.1 microM) also inhibited [3H]glutamate release, and SB-258719 (10 microLM) suspended this effect. We therefore speculated that the axon terminals of the glutamatergic cortico-raphe neurons may possess 5-HT7 receptors that inhibit glutamate release, which consequently leads to decreased activity of serotonergic neurons. The postulated glutamatergic-serotonergic interaction in the raphe nuclei was further evidenced by the finding that N-methyl-D-aspartate and AMPA enhanced [3H]5-HT release. 相似文献