首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspects of the water relations of spring wheat (Triticum aestivumL.) are described for cultivars Highbury (low ABA) and TW269/9(high ABA), and low and high ABA accumulating F6selections derivedfrom a cross between them. In a pot experiment, pressure-volume (P-V) curves were constructedfor main stem leaf four (MSL4) of well-watered plants of Highburyand TW269/9. Estimates of solute potential (2) from these curveswere similar for the two cultivars, but varied with the timeof sampling and the time allowed for hydration in dim light. In a field experiment with four low and four high ABA F6lines,P-V curves for flag leaves from both droughted and irrigatedplants gave at both zero turgor (p) and zero water potential(1) which differed with degree of stress, sampling time andgenotype. 1was strongly dependent on the initialL of the leafand was reduced on average by c. 0.4 MPa per MPa decline ininitial L.5, was lower (more negative) by c. 0.1-MPa in theafternoon than in the morning. Overall, was also 0.1 MPa lowerin low ABA lines than in high ABA lines. In another field experiment, flag leaves of five low and fivehigh ABA F6lines were sampled over a 4 week period from droughtedplots and L and 5, measured (the latter by osmometry with expressedsap). For these leaves 5, at zero p or zero L was consistentlylower by 0.3–0.5 MPa than estimates of 5, from the P-Vcurves with flag leaves. However, data for the low ABA lineswere again lower (by c. 0.1 MPa) than those for high ABA lines. The consequences of these differences in 1 are discussed inrelation to the stimulation of ABA accumulation in low and highABA selections. Key words: Water potential, Solute potential, P-V curves, Wheat (Triticum aestivum), Drought stress  相似文献   

2.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

3.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

4.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

5.
An equation is derived expressing average turgor pressure ofa leaf (p) as a function of relative water content (RWC). Basedon this derivation, the relationships of the bulk elastic modulus(v) and both RWC and p, are formulated and discussed. The bulkelastic modulus (v) becomes zero for p = 0, that is at the turgorloss point for the leaf. At full water saturation the valueof ev is proportional to the water saturation turgor potentialp(max). The factor relating P and v (structure coefficient ,Burstrom, Uhrstr?m and Olausson, 1970) changes only very littlefor values of p, which are not too close to zero. An exampleis given for the calculation from experimental data of the turgorpressure function, the structure coefficient function, and thev function. Key words: Cell wall, Turgor pressure, Bulk elastic modulus  相似文献   

6.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

7.
Thomas, H. 1987. Physiological responses to drought of Loliumperenne L.: Measurement of, and genetic variation in, waterpotential, solute potential, elasticity and cell hydration.—J.exp. Bot. 38: 115–125. Clonally-replicated genotypes of Loiium perenne L. were grownin a controlled environment. Leaf water potential (w) osmoticpotential (s), turgor potential (p = ws), elasticity(E), leaf hydration (g water per g dry matter, H) and numberof green leaves per tiller (NGL) were measured before and duringa 42 d drought treatment. A simplified method of estimating E (at w < 1?0 MPa) usingonly six measurements was developed to permit a measurementrate of 8 leaves per hour. Measurement errors in all characterswere 3% or less. During drought, w and s (at w = 0?5 MPa) decreased significantly,p and E increased significantly, and H decreased slightly. Plantsize during drought was negatively correlated with s, and Hand positively correlated with p, osmotic adjustment, E andNGL. Measurements made on the genotypes before draughting didnot give a reliable indication of their physiological conditionafter adaptation to drought. Genetically controlled variation (‘broad sense heritability’)of drought-adapted plants for E was 15%, w 23%, s, 34%, p, 35%,H 34% and NGL 64%. The possibilities for, and effectivenessof, divergent selection of genotypes with high and low expressionof the characters are discussed. Key words: Water relations, Lolium, genetic variation  相似文献   

8.
By analysing the relationship between inverse water potential(–1), and relative water content (RWC) measured on leavesof roses (Rosa hybrida cv. Sonia), grown soilless, it was foundthat a non-linear (NL) model was better suited than a linearmodel to reproduce values observed in the non-turgid region.To explain this apparent curvature, it is assumed that a reductionof the non-osmotic water fraction (Ap) takes place when decreases.Osmotic potentials () measured on fresh and frozen leaf discstend to support this hypothesis. A method for exploiting PVcurves, which takes into account the variation of Ap, is described.It delivers values for the turgor pressure (p), the relativeosmotic water content, and the mean bulk volumetric elasticitycoefficient, lower than those given by the linear model. Onthe other hand, it gives higher estimates for Ap and for . Whenapplying the traditional model to obtain estimates for waterrelations characteristics of rose leaves, and comparing resultsfrom two distinct salinity treatments (electrical conductivitiesof 1·8 mS cm–1 and 3·8 mS cm–1, respectively),one deduces a significant reduction of at turgor-loss in thehigh salinity treatment. The NL method is, in addition, ablesimultaneously to reveal a reduction of and a significant increasein p at RWC=100% this proves that soilless–grown roseplants are able to osmoregulate when subjected to a constantand relatively high degree of salinity. Key words: Apoplastic water, non-linear regression, pressure-volume curves, tissue-water relations  相似文献   

9.
The effect of Chromium VI on leaf water potential (w), solutepotential (a), turgor potential (p) and relative water content(RWC) of primary and first trifoliatc leaves of Phaseolus vulgarisL. was studied under normal growth conditions and during anartificially induced water stress period in order to establishthe possible influence of this heavy metal on the water stressresistance of plants. Plants were grown on perlite with nutrientsolution containing 0, 1•0, 2•5, 5•0 or 10•0µg cm–3 Cr as Na2Cr2O7.2H2O. The effect of Cr onwater relations was highly concentration dependent, and primaryand first trifoliate leaves were affected differently. The growthreducing concentrations of Cr (2•5, 5•0 and 10•0µg cm–3) generally decreased s and w and increasedp in primary leaves. The 1•0 µg cm–3 Cr treatmentdid not affect growth, but altered water relations substantially:in primary leaves w and p were increased and s decreased, whilein trifoliate leaves the effect was the opposite. All Cr treatedplants resisted water stress for longer than control plants.The higher water stress resistance may be due to the lower sand to the increased cell wall elasticity observed in Cr VItreated plants. Key words: Phaseolus vulgaris, Chromium VI, water stress, Richter plot  相似文献   

10.
Legge, N. J. 1985. Water movement from soil to root investigatedthrough simultaneous measurement of soil and stem water potentialin potted trees.—J. exp. Bot. 36: 1583–1589. Osmotic tensiometers implanted in the stems of three mountainash (Eucalyptus regnans F. Muell.) saplings growing in largeplastic bins recorded stem water potential, w, while soil waterpotential, w, was simultaneously recorded by instruments nearthe trees' roots and in the surrounding root-free soil Earlyin a drying cycle, with the soil still wet, the diurnal variationin 1, was often slight, despite diurnal variations in u approaching2.0 M Pa. Late in a drying cycle the diurnal fluctuations in1, and u were very similar although changes in 1, still laggedup to 1.5 h behind changes in u. 1values at this time occasionallyreached –3.0 MPa with no apparent damage to the treesWatering the bins in daytime led to a response in 1, valueswithin about 5 min, whereas u, values did not respond for afurther 20 min. u values then rose rapidly but after only 1h began to decline again, while 1, values remained at or nearsaturation for the rest of the day. Water uptake hypotheseswhich attribute an important role to a soil-root interface resistanceare not supported by these data Key words: —Soil water potential, penrhizal gradients  相似文献   

11.
The Meaning of Matric Potential   总被引:6,自引:1,他引:5  
The commonly used equation, = P - + , which describes thepartitioning of plant water potential, , into components ofhydrostatic pressure, P, osmotic pressure, , and matric potential,, is misleading. The term , which is supposed to show the influenceof a solid phase on , is zero if a consistent definition ofpressure is used in the standard thermodynamic derivation. However,it can be usefully defined by = + D, where D is the osmoticpressure of the equilibrium dialysate of the system. The practicaland theoretical significance of this definition is discussed.  相似文献   

12.
Data from pressure-volume (PV) analysis may be submitted totransformation I [i.e. leaf water potential (1) versus inverserelative water content (1/R)] or to transformation II (i.e.1/1 versus R). This may cause an essential distortion of theerror structure especially in transformation II due to the relativelylarge range which is to be covered by the 1/1 ratio. Similarly,logarithmic transformation of leaf turgor potential (P) whenderiving the sensitivity factor of elasticity (ß)by linear regression from values of In p and 1/R may distortthe error structure. In order to investigate the magnitude ofthe distortion effect on parameters derived from PV analysisby regression a non-linear regression procedure was comparedwith the common linear procedure when calculating p from ßin the turgid region and leaf osmotic potential (P) in boththe turgid and non-turgid region. As test plants we used fieldgrown species of spring barley (Hordeum distichum L., cvs Gunnarand Alis). The results show that transformations and applicationof linear regression procedures distort the error structureof p more than the error structure of ', which was only slightlyaffected. However, we recommend the use of the non-linear procedurein both cases. Furthermore, from PV analysis, obtained by thermocouple hygrometryon living and killed leaf tissue, respectively, we derived themathematical basis for calculating the apoplastic water fraction(Ra). Ra was 0.15 at R= 1 and decreased with dehydration. The equations describing the relation between and R and betweenp and R were extended to take into account the apoplastic waterfraction. Key words: Apoplastic water, distortion errors, non-linear regression, pressure-volume curves  相似文献   

13.
Regulation of Electrogenic Pumping in Barley by pH and ATP   总被引:4,自引:1,他引:3  
The relationship of the electrogenic pump to the ATP concentrationin barley roots was examined. Excision, salt accumulation andchanges in temperature produced changes in the ATP concentrationwhich did not correlate with changes in membrane potential (m).Illumination of seedlings prior to excision of the root elevatedthe ATP level and caused m to hyperpolarize. Metabolic inhibitionby sodium azide resulted in a fall in ATP concentration andmembrane depolarization. With treatment in azide for longerthan 10 min there was a linear relationship between ATP concentrationand m. Time-courses of the effects of azide and carbon monoxideshowed that this relationship did not hold at short treatmenttimes because the ATP concentration fell more rapidly than thedecay of m. Application of butyrate or fusicoccin produced littleor no change in the ATP concentration but both caused significantchanges in m. The effects on m of butyrate, fusicoccin, external pH and metabolicinhibitors were considered to be consistent with regulationof electrogenic pumping by cytoplasmic pH. Key words: Cytoplasmic pH, Electrogenic pumping, Fusicoccin, Butyrate  相似文献   

14.
The pressure-volume technique was employed to compare waterrelations and moisture stress-induced osmotic adjustment ofPeriwinkle (Catharanthus roseus) cv. Pink (PC), Oscillatus (REC)and White (WC). Leaf water potential (w), osmotic potential(s), turgor potential (p), bulk modulus of elasticity (), boundwater (RWCw) and leaf hydration (H), were estimated by exposingthe plants to a drying cycle during which well watered plantswere dehydrated to zero turgor, and then irrigated. Osmoticadjustment (w 100) was calculated by comparing a at full hydration(a 100) in stressed plants after recovery, with a 100 in controlplants. Values of 2100 were 0.76, 0.33 and 0.11 MPa in cv. PC,REC and WC, respectively. Maintenance of p at lower 3 and relativeleaf water content (RWC) in prestressed PC was attributableto a higher alkaloid content and greater leaf cell wall elasticity.RWCW was plotted against p to determine its contribution tohydration maintenance at lower p. Genotype PC showed greaterRWCw at lower p compared with REC and WC. The present studyhas demonstrated that there are cultivar differences in alkaloidaccumulation and water relations in acclimated plants and thatthe relative ranking for drought resistance within periwinkleappeared to correspond with the changes in osmotic properties. Medicinal plant, drought resistance, alkaloids, periwinkle [Catharanthus roseus (L.) G. Don]  相似文献   

15.
The effects of -hydroxy-2-pyridinemethanesulphonic acid (-HPMS)upon net photosynthesis (Pn, the CO2 compensation point (),post-lower illumination burst of CO2 (PLIB) and post-lower temperatureburst of CO2 (PLTB) in detached rye (Secale cereale L.) leaveswere investigated. At low concentrations ( 0.5 mol m–3),-HPMS initially stimulated Pn and decreased the magnitude ofboth PLIB and PLTB. The decreased at all concentrations of-HPMS (0.05–5.0 mol m–3. The effects of -HPMS onPn and were time-dependent and, after a few minutes, the Pnwas inhibited while values increased considerably. At a higherconcentration (5.0 mol m –3), the transient effects of-HPMS were shorter () or not observed at all (Pn. Both PLIBand PLTB, when expressed in relation to Pn, increased at higherlevels of this compound. Similar data with respect to the effectsof -HPMS on PLIB and PLTB were found for leaves of dandelion(Taraxacum officinale L.). The results suggest that -HPMS may stimulate Pn by inhibitingphotorespiration, as originally suggested by Zelitch (1966),but only at low concentrations and over a short time span. Thedecrease of PLIB and PLTB values at low -HPMS levels is consistentwith these processes being a residual activity of the glycolatepathway. Key words: CO2 compensation point, -hydroxy-2-pyridinemethanesulphonic acid, photorespiration, photosynthesis  相似文献   

16.
In recent years alternative ways have been proposed to transformmeasurements of leaf water potential, , and relative water content,R*, in order to derive values of osmotic pressure at full turgidityin leaves and shoots, o(when 0). Two types of transformationsare usually considered: 1/ versus R* and versus 1/R*, and linearregression is used to fit the data in the region where turgoris thought to be zero. It appears that when o is estimated bylinear extrapolation of 1/Psi; versus R* then apoplastic watermight not influence the accuracy of o but when the versus \/R*transformation is used apoplastic water causes an underestimateof o. We examine the accuracy of the estimate of o obtainedfrom the two transformations when there are random errors in, systematic errors in , and when the osmotic solutions arenon-ideal. The 1/ versus R* transformation generally producesthe best estimate of 0 by linear extrapolation.  相似文献   

17.
KUMAR  A; ELSTON  J 《Annals of botany》1992,70(1):3-9
Various kinds of measurement of tissue water status were madeseveral times during water stress and recovery in Brassica juncea(cv Canadian Black) and B napus (cv Drakkar) Unstressed plantsof the two species had similar leaf water potentials (w), solute(s) and turgor potentials (p) Values of relative water content(RWC) and the slope of the linear relationship between p andRWC (p/RWC) were greater in B napus than in B juncea Statistical correlations of pooled data for the watered andstressed treatments differentiated the relationships among RWC,w and its components in the two species The major statisticaldifference was that p/RWC was related to RWC in B napus andto w and s in B juncea A decline in p/RWC with decreasing sin B juncea may be a mechanism for maintaining p at low soilwater potentials through maintenance of more elastic cell walls. Brassica juncea, Brassica napus, osmotic adjustment, tissue elasticity, water relations  相似文献   

18.
Photosynthesis under conditions known to favour glycollate excretionby algae did not result in glycollate excretion in a strainof Chlorella pyrenoidosa unless an inhibitor of glycollate oxidase,-hydroxypyridin-2yl-methane sulphonate (-HPMS), was present.This inhibitor increased the total amount of glycollate presentin the supernatant from the cells during photosynthetic carbondioxide fixation and gave accumulation of 14C in glycollateduring 14CO2 fixation under conditions favouring glycollatesynthesis. At pH 8.3 -HPMS did not stimulate photosynthetic14CO2 fixation in C. pyrenoidosa as occurs with some algae.Photoassimilation of acetate was inhibited by -HPMS, and thiswas shown to result from acetyl-CoA synthetase inhibition by-HPMS.  相似文献   

19.
The euryhaline charophyte Lamprothamnium papulosum (Wallr.)J. Gr. was adapted to media with decreasing salinities rangingfrom 550 to 0 mosmol kg–1. Vegetative plants grown inmedia with osmotic pressures (0) in the range of 550 to 130mosmol kg–1 maintained a constant turgor pressure () at309 + 7 mosmol kg–1. The ions K+, Na+ and Cl–, werethe predominant solutes in the vacuole. Changes in their concentrationsaccount for the variation in internal osmotic pressure (1) with,0. The divalent ions Mg2+, Ca2+ and were also present in significant amounts, but their concentrationsdid not alter with changes in, 0. In cells subjected to hypo-osmotic shock the regulation of was incomplete. The turgor pressure increased from 302 to 383mosmol kg–1. The first rapid response to the sudden decreasein 0 was a loss of K+ and Cl. In contrast to the decreasein ionic concentrations an accumulation of sucrose occurredwhich could account for the increase of . The increase in sucroseconcentration started 24 to 48 h after the downshock and reachedits highest value after 3 to 4 weeks. The sucrose concentrationin the vacuole was up to 320 mol m–3. During this timethe ionic content continued to decrease but did not counterbalancethe sucrose concentration sufficiently to regain the original. High sucrose levels accompanied by an enhanced were also observedduring the period of fructification (sexual reproduction: formationof antheridia and oogonia) in Lamprothamnium kept under conditionsof constant salinity. It is concluded that high sucrose content and elevated arecharacteristic of sexual reproduction in this charophyte. Lamprothamniumis able to tolerate different during various developmentalstages (e.g. vegetative and reproductive phases). Key words: Lamprothamnium papulosum, sucrose, turgor pressure  相似文献   

20.
The components of leaf water potential (l) and relative watercontent (RWC) were measured for stands of bambara groundnut(Vigna subterranea) exposed to three soil moisture regimes incontrolled-environment glasshouses at the Tropical Crops ResearchUnit, Sutton Bonington Campus. Treatments ranged from fullyirrigated (wet) to no irrigation from 35 days after sowing (DAS)(dry). RWC values varied between 92–96% for the wet treatment,but declined from 93% to 83% in the dry treatment as the seasonprogressed. l at midday decreased in both the wet and dry treatments,but the seasonal decline was more pronounced in the latter:seasonal minimum values were –1.19 and –2.08 MPa,respectively. Plants in the wet treatment maintained turgor(p) at about 0.5 MPa throughout the season, whereas values inthe dry treatment approached zero towards the end of the season.There was a linear relationship between p and l9 with p approachingzero at a l of –2.0 MPa. Mean daily leaf conductance wasconsistently higher in the wet treatment (0.46–0.79 cm-1)than in the intermediate and dry treatments (0.13–0.48cm s-1 Conductances in the intermediate and dry treatments weresimilar, and the lower evapotranspirational water losses inthe latter were attributable to its consistently lower leafarea indices (L): L at final harvest was 3.3, 3.3 and 1.9 forthe wet, intermediate and dry treatments. Bambara groundnutwas apparently able to maintain turgor through a combinationof osmotic adjustment, reductions in leaf area index and effectivestomatal regulation of water loss. Key words: Vigna subterranea, water relations, soil moisture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号