首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Measurements of carbon dioxide exchange and transpiration were made, at various air temperatures, on wheat and barley using a field enclosure system. From these were derived the stomatal and mesophyll resistances to carbon dioxide transfer. Optimum temperatures for net CO2 uptake were about 24°C for wheat and barley. Above these optima, as temperature increased so net CO2 uptake rates decreased, because of increasing stomatal and mesophyll resistances; transpiration rates decreased in wheat but were constant in barley. In laboratory growth cabinets, wheat plants were subjected to different regimes of temperature and humidity. Optimum temperature for net CO2 uptake of individual leaves was 25°C. At constant humidity, a decline in net uptake rates above 25°C was associated with large increases in mesophyll resistance. At a constant 25°C, as the vapour pressure deficit (v.p.d. was increased above 1 k Pa (10 mb) v.p.d. the net uptake declined, with an increase in mesophyll resistance and a small increase in stomatal resistance. When the v.p.d. exceeded 1 k Pa at a temperature of 30°C, conditions that are experienced by field plants, then there were large increases in both mesophyll and stomatal resistances and the net uptake rates declined. Photo-respiration, as measured by CO2 uptake in oxygen-free air, was independent of temperature, but both dark respiration and CO2 compensation concentration increased with temperature.  相似文献   

2.
Cox LM  Boersma L 《Plant physiology》1967,42(4):550-556
An apparatus was developed for the measurement of transpiration rates of Trifolium repens. The transpiration rates were measured under controlled conditions of soil water stress and soil temperature. Other environmental parameters such as air temperature, relative humidity, light intensity and air speed were held constant. Diffusive resistances were calculated and stomatal aperture changes were recorded for all treatment combinations. A significant interaction between soil water stress and soil temperature was observed for stomatal closures. Stomatal closure was observed even in the so-called wet range of soil water stress. An increase in mesophyll resistance or incipient drying was observed for several treatment combinations. The mesophyll resistance was shown to increase as soil water stress increased.  相似文献   

3.
The CO2 and H2O vapour exchange of single attached orange, Citrus sinensis (L.), leaves was measured under laboratory conditions using infrared gas analysis. Gaseous diffusive resistances were derived from measurements at a saturating irradiance and at a leaf temperature optimum for photosynthesis. Variation in leaf resistance (within the range 1.6 to 60 s cm-1) induced by moisture status, or by cyclic oscillations in stomatal aperture, was associated with changes in both photosynthesis and transpiration. At low leaf resistance (ri less than 10 s cm-1) the ratio of transpiration to photosynthesis declined with reduced stomatal aperture, indicating a tighter stomatal control over H2O vapour loss than over CO2 assimilation. At higher leaf resistance (ri greater than 10 s cm-1) changes in transpiration and photosynthesis were linearly related, but leaf resistance and mesophyll resistance were also positively correlated, so that strictly stomatal control of photosynthesis became more apparent than real. This evidence, combined with direct measurements of CO2 diffusive resistances (in a -O2 gas stream) emphasised the presence of a significant mesophyll resistance; i.e., an additional and rate limiting resistance to CO2 assimilation over and above that encountered by H2O vapour escaping from the leaf.  相似文献   

4.
The effects of light, temperature, and salinity on growth, net CO2 exchange and leaf anatomy of Distichlis spicata were investigated in controlled environment chambers. When plants were grown at low light, growth rates were significantly reduced by high substrate salinity or low temperature. However, when plants were grown at high light, growth rates were not significantly affected by temperature or salinity. The capacity for high light to overcome depressed growth at high salinity cannot be explained completely by rates of net photosynthesis, since high salinity caused decreases in net photosynthesis at all environmental conditions. This salinity-induced decrease in net photosynthesis was caused largely by stomatal closure, although plants grown at low temperature and low light showed significant increases in internal leaf resistance to CO2 exchange. Increased salinity resulted in generally thicker leaves with lower stomatal density but no significant differences in the ratio of mesophyll cell surface area to leaf area. Salinity and light during growth did not significantly affect rates of dark respiration. The mechanisms by which Distichlis spicata tolerates salt appear to be closely coulpled to the utilization of light energy. Salt-induced leaf succulence is of questionable importance to gas exchange at high salinity in this C4 species.  相似文献   

5.
P. G. Jarvis  R. O. Slatyer 《Planta》1970,90(4):303-322
Summary Evidence is presented which suggests that the mesophyll cell walls of cotton leaves may influence observed rates of transpiration.The net diffusive flux of water vapour, from the upper and lower surfaces of a leaf, was compared with the flux of nitrous oxide through a leaf and evidence obtained of an extra resistance in the water-vapour pathway associated with water transport in the mesophyll cell walls.This extra resistance appeared to be insignificant at low transpiration rates and in turgid leaves, but increased with transpiration rate and dehydration. The most likely explanation for its origin appeared to be a reduction in hydraulic conductivity across the internal cuticle which lines the outer surfaces of the mesophyll cell walls. In turn this served to reduce the relative vapour pressure at the sites of evaporation.The experiments were conducted under conditions where stomatal opening was induced by CO2-free air. Under normal conditions stomatal closure would tend to reduce the development of this extra resistance. Even so, the results throw doubt on the validity of the long-standing assumption that the water-vapour pressure at the evaporation sites is equal to the saturation vapour pressure under all conditions.  相似文献   

6.
Photosynthetic Response to Water Stress in Phaseolus vulgaris   总被引:1,自引:0,他引:1  
Water stressed Phaseolus vulgaris L. plants were monitored to detect the relationships between net photosynthesis, transpiration, boundary layer plus stomatal resistance, mesophyll resistance, CO2 compensation point, ribulose, 1,5-diphosphate carboxylase activity and leaf water potential. At full expansion, the first trifoliate leaves of greenhouse grown bean plants were subjected to water stress by withholding irrigation. Gas exchange and enzyme activity of the central trifoliolate leaflets were monitored as leaf water potential decreased. Although increased stomatal resistance appeared to be the primary causal factor of reduced net photosynthesis, increased mesophyll resistance and decreased ribulose 1,5-diphosphate carboxylase activity further documented the role of non-stomatal factors.  相似文献   

7.
Photosynthesis and transpiration of excised leaves of Taraxacum officinale L. and a few other species of plants were measured, using an open gas analysis system. The rates of CO2 uptake and transpiration increased in two steps upon illumination of stomata-bearing epidermis of these leaves at a light intensity of 50 mW × cm−2. Abscisic acid inhibited only the second step of gas exchange. Illumination of the astomatous epidermis of hypostomatous leaves caused only the first step of gas exchange. These data indicate that the first and second steps arise from cuticular and stomatal gas exchange, respectively. The rate of the cuticular photosynthesis in a Taraxacum leaf reached saturation at a light intensity of 5 mW × cm−2, and the rates of the stomatal photosynthesis and transpiration reached saturation at a higher intensity of 35 mW × cm−2. The cuticular photosynthesis of a Taraxacum leaf was 18% of the stomatal photosynthesis at 50 mW × cm−2 and 270% at 5 mW × cm−2. The other species of leaves showed the same trend. The importance of cuticular CO2 uptake in leaf photosynthesis, especially under low light intensity was stressed from these data.  相似文献   

8.
Plants of Solidago virgaurea L. from exposed and shaded habitats differ with respect to the response of the photosynthetic apparatus to the level of irradiance during growth. An analysis was carried out on leaf characteristies which might be responsible for the differences established in the rates of Hght-saturated CO2 uptake. The clones were grown in controlled environment chambers at high and low levels of irradiance. Light-saturated rates of photosynthesis and transpiration were measured at natural and lower ambient CO2 concentrations. A low temperature dependence of light-saturated CO2 uptake at natural CO2 concentrations, and a strong response to changes in stomatal width, suggested that the rate of CO2 transfer from ambient air towards reaetion sites in chloroplasts was mainly limiting the pholosynthetic rate. Resistances to transfer of CO2 for different parts of the pathway were calculated. There was a weak but significant correlation between stomatal conductance and the product stomatal frequency ± pore length. Mesopbyll conductance and dry weight per unit area were highly correlated in leaves not damaged by high irradiance. This suggests that mesophyll conductance increases with increasing cross sectional area (per unit leaf area) of the pathways of CO2 transfer in the mesophyll from cell surfaces to reaction sites. The higher light-saturated photosynthesis in clones from exposed habitats when grown at high irradiance than when grown at low irradiance was attributable mainly to a lower mesophyll resistance. In shade clones the effect upon CO2 uptake of the increase in leaf thickness when grown at high irradiance was counteracted by the associated inactivation of the photosynthetic apparatus. The difference in CO2 uptake present between clones from exposed and shaded habitats when preconditioned to high irradiance resulted from differences in both mesophyll and stomatal resistances. A few hybrid clones of an F1-population from a cross between a clone from an exposed habitat and a clone from a shaded habitat reacted, on the whole, in the same way as the exposed habitat parent. When grown at high irradiance, the hybrid clones showed higher photosynthetic rates than either parent; this was largely attributable to the unusually low stomatal resistance of the hybrid leaves.  相似文献   

9.
Rate of net CO2 assimilation by soil-grown soybean plants were studied over a range of relative leaf water contents at each of four levels of irradiance. There was a large interaction between light level and leaf water deficit on the rate of CO2 assimilation. The effect of leaf water deficit on assimilation became larger as irradiance increased. Both stomatal resistance to CO2 transport and mesophyll resistance to CO2 assimilation increased as leaf-water deficit increased. The increase in both resistance with changing leaf-water content was largest at high irradiance and became smaller as irradiance decreased. Relief of soil-moisture stress by watering induced large oscillations of CO2 assimilation, stomatal resistance, and mesophyll resistance. The oscillation of the mesophyll resistance occurred in the absence of changes in relative water content and appeared to be related to oscillations in leaf temperature. The observed increase in mesophyll resistance with decreasing leaf-water content under nonoscillative conditions may be caused by changes in leaf temperature rather than leaf water content.  相似文献   

10.
The relationship between leaf resistance to water vapour diffusion and each of the factors leaf water potential, light intensity and leaf temperature was determined for leaves on seedling apple trees (Malus sylvestris Mill. cv. Granny Smith) in the laboratory. Leaf cuticular resistance was also determined and transpiration was measured on attached leaves for a range of conditions. Leaf resistance was shown to be independent of water potential until potential fell below — 19 bars after which leaf resistance increased rapidly. Exposure of leaves to CO2-free air extended the range for which resistance was independent of water potential to — 30 bars. The light requirement for minimum leaf resistance was 10 to 20 W m?2 and at light intensities exceeding these, leaf resistance was unaffected by light intensity. Optimum leaf temperature for minimum diffusion resistance was 23 ± 2°C. The rate of change measured in leaf resistance in leaves given a sudden change in leaf temperature increased as the magnitude of the temperature change increased. For a sudden change of 1°C in leaf temperature, diffusion resistance changed at a rate of 0.01 s cm?1 min?1 whilst for a 9°C leaf temperature change, diffusion resistance changed at a rate of 0.1 s cm?1 min?1. Cuticular resistance of these leaves was 125 s cm?1 which is very high compared with resistances for open stomata of 1.5 to 4 s cm?1 and 30 to 35 s cm?1 for stomata closed in the dark. Transpiration was measured in attached apple leaves enclosed in a leaf chamber and exposed to a range of conditions of leaf temperature and ambient water vapour density. Peak transpiration of approximately 5 × 10?6 g cm?2 s?1 occurred at a vapour density gradient from the leaf to the air of 12 to 14 g m?3 after which transpiration declined due presumably to increased stomatal resistance. Leaves in CO2-free air attained a peak transpiration of 11 × 10?6 g cm?2 s?1 due to lower values of leaf resistance in CO2 free air. Transpiration then declined in these leaves due to development of an internal leaf resistance (of up to 2 s cm?1). The internal resistance was masked in leaves at normal CO2 concentrations by the increase in stomatal resistance.  相似文献   

11.
The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure.  相似文献   

12.
CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to light and temperature. Generally, the stomatal conductance was highest at 20°C.The study reveals that all these species can easily be cultivated at relatively lower altitudes. However, proper agronomical methodology will need to be developed for better yields.  相似文献   

13.
A realistic numerical three‐dimensional (3D) model was constructed to study CO2 transport inside a birch leaf. The model included chloroplasts, palisade and spongy mesophyll cells, airspaces, stomatal opening and the leaf boundary layer. Diffusion equations for CO2 were solved for liquid(mesophyll) and gaseous(air) phases. Simulations were made in typical ambient field conditions varying stomatal opening, photosynthetic capacity and temperature. Doubled ambient CO2 concentration was also considered. Changes in variables caused non‐linear effects in the total flux, especially when compared with the results of double CO2 concentration. The reduction in stomatal opening size had a smaller effect on the total flux in doubled concentrations than ambient CO2. The reduced photosynthetic capacity had a similar effect on the flux in both cases. The palisade and spongy mesophyll cells had unequal roles mainly due to the light absorption profile. Results from the 3D simulation were also compared to the classical one‐dimensional resistance approach. Liquid and gas phase resistances were estimated and found strongly variable according to changes in temperature and degree of stomatal opening. For the birch leaves modelled, intercellular airspace resistance was small (2% of the total resistance in saturating irradiance conditions at 25 °C at stomatal opening diameter of 4 µm) whereas the liquid phase resistance was significant (23% for mesophyll and chloroplasts in the same ‘base case’). The absorption of CO2 into water at cell surfaces caused additional (strongly temperature dependent) resistance which accounted for 36% of the total resistance in the base case.  相似文献   

14.
Simultaneous cyclic variation in rates of both net photosynthesis and transpiration were induced in attached leaves of cotton and pepper plants under constant environmental conditions. The cyclic variations in photosynthesis and transpiration were found to be in phase, and the ratio net photosynthetic rate/transpiration rate remained constant over a wide range of gas exchange rates. A similar constancy of this ratio was also found as gas exchange rates declined following excision of a sunflower leaf, which was not initially cycling, in air. These results suggested that change in stomatal aperture was the only controlling factor involved and that it was affecting both processes proportionately. Visible loss of leaf turgur and measurable water stress developed in both pepper and cotton at peak exchange rates, but the gas exchange ratio remained constant. The failure of water stress and increased stomatal aperture to lower the gas exchange ratio suggested an absence of any significant leaf mesophyll resistance (r′m) to inward diffusion of CO2. The possibility that r′m was low is discussed generally, and in relation to the use of chemical antitranspirants to raise the gas exchange ratio. Within the limits of the experiments, water stress apparently had no direct adverse effect on rates of net photosynthesis. The gas exchange ratio did not rise as exchange rates declined. Ultimately, at very low exchange rates, the ratio fell, declining to zero in cotton, but not in pepper. This decline was attributed to the onset of significant gas exchange through the cuticle, which was apparently less permeable to CO2 than to water vapour. Positive net cuticular photosynthesis therefore probably does not occur in cotton. Except at very low exchange rates, the gas exchange ratio was higher in cotton than in pepper; it was similar in sunflower and cotton.  相似文献   

15.
Summary Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20–25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.  相似文献   

16.
Midday depression of net photosynthesis and transpiration in the Mediterranean sclerophylls Arbutus unedo L. and Quercus suber L. occurs with a depression of mesophyll photosynthetic activity as indicated by calculated carboxylation efficiency (CE) and constant diurnal calculated leaf intercellular partial pressure of CO2 (Ci). This work examines the hypothesis that this midday depression can be explained by the distribution of patches of either wide-open or closed stomata on the leaf surface, independent of a coupling mechanism between stomata and mesophyll that results in a midday depression of photosynthetic activity of the mesophyll. Pressure infiltration of four liquids differing in their surface tension was used as a method to show the occurrence of stomatal patchiness and to determine the status of stomatal aperture within the patches. Liquids were selected such that the threshold leaf conductance necessary for infiltration through the stomatal pores covered the expected diurnal range of calculated leaf conductance (g) for these species. Infiltration experiments were carried out with leaves of potted plants under simulated Mediterranean summer conditions in a growth chamber. For all four liquids, leaves of both species were found to be fully infiltratable in the morning and in the late afternoon while during the periods leading up to and away from midday the leaves showed a pronounced patchy distribution of infiltratable and non-infiltratable areas. Similar linear relationships between the amount of liquid infiltrated and g (measured by porometry prior to detachment and infiltration) for all liquids clearly revealed the existence of pneumatically isolated patches containing only wide-open or closed stomata. The good correspondence between the midday depression of CE, calculated under the assumption of no stomatal patchiness, and the diurnal changes in non-infiltratable leaf area strongly indicates that the apparent reduction in mesophyll activity results from assuming no stomatal patchiness. It is suggested that simultaneous responses of stomata and mesophyll activity reported for other species may also be attributed to the occurrence of stomatal patchiness. In Quercus coccifera L., where the lack of constant diurnal calculated Ci and major depression of measured CE at noontime indicates different stomatal behavior, non-linear and dissimilar relationships between g and the infiltratable quantities of the four liquids were found. This indicates a wide distribution of stomatal aperture on the leaf surface rather than only wide-open or closed stomata.Dedicated to Professor Otto L. Lange on the occasion of his 65th birthday  相似文献   

17.
For an analysis of the inhibition of the photosynthetic CO2-uptake after heat stress attached leaves of Hedera helix L. were heat-stressed for 30 min at various temperatures. Subsequently their photosynthetic CO2-uptake, transpiration, respiration in light and darkness, and CO2-compensation concentration were measured under optimal conditions. After heat stress the stomatal resistance increased only corresponding to the raised CO2-concentration inside the leaves (due to the reduced CO2-uptake). The physical resistance between the mesophyll cell walls and the chloroplasts remained unchanged after heat stress. A non-stomatal inhibition of the CO2-uptake is indicated by a strong increase of the CO2-compensation concentration after heat stress. This is hardly due to a stimulation of the respiration in light, as the CO2-evolution into CO2-free air in light was even reduced. Therefore, it must be concluded that the photosynthetic process itself is impaired after heat stress.  相似文献   

18.
Identifying the consequences of grass blade morphology (long, narrow leaves) on the heterogeneity of gas exchange is fundamental to an understanding of the physiology of this growth form. We examined acropetal changes in anatomy, hydraulic conductivity and rates of gas exchange in five grass species (including C(3) and C(4) functional types). Both stomatal conductance and photosynthesis increased along all grass blades despite constant light availability. Hydraulic efficiency within the xylem remained constant along the leaf, but structural changes outside the xylem changed in concert with stomatal conductance. Stomatal density and stomatal pore index remained constant along grass blades but interveinal distance decreased acropetally resulting in a decreased path length for water movement from vascular bundle to stomate. The increase in stomatal conductance was correlated with the decreased path length through the leaf mesophyll. A strong correlation between the distance from vascular bundles to stomatal pores and stomatal conductance has been identified across species; our results suggest this relationship also exists within individual leaves.  相似文献   

19.
Summary Injury caused by low O3 concentrations (0, 0.05, 0.075, 0.1 l 1-1) was analyzed in the epidermis and mesophyll of fully developed birch leaves by gas exchange experiments and low-temperature SEM: (I) after leaf formation in O3-free and ozonated air, and (II) after transferring control plants into ozonated air. In control leaves, autumnal senescence also was studied in O3-free air (III). As O3 concentration increased, leaves of (I) stayed reduced in size, but showed increased specific weight and stomatal density. The declining photosynthetic capacity, quantum yield and carboxylation efficiency lowered the light saturation of CO2 uptake and the water-use efficiency (WUE). Carbon gain was less limited by the reduced stomatal conductance than by the declining ability of CO2 fixation in the mesophyll. The changes in gas exchange were related to the O3 dose and were mediated by narrowed stomatal pores (overriding the increase in stomatal density) and by progressive collapse of mesophyll cells. The air space in the mesophyll increased, preceded by exudate formation on cell walls. Ozonated leaves, which had developed in O3-free air (II), displayed a similar but more rapid decline than the leaves from (I). In senescent leaves (III), CO2 uptake showed a similar decrease as in leaves with O3 injury but no changes in mesophyll structure and WUE. The nitrogen concentration declined only in senescent leaves in parallel with the rate of CO2 uptake. A thorough understanding of O3 injury and natural senescence requires combined structural and functional analyses of leaves.  相似文献   

20.
Detached corn and sunflower leaves supplied with PbCl2 via the transpiration stream exhibited reduced rates of photosynthesis. The difference between species in the amount of Pb taken up was in direct proportion to their respective transpiration rates. For both species the reduction in photosynthesis and the amount of Pb taken up increased with increasing treatment concentrations. A corresponding reduction occurred in the rate of transpiration suggesting that stomatal resistance may be increased by Pb contamination. The pathways of CO2 and water vapor exchange are discussed in relation to the effects of Pb on photosynthesis and transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号