首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
3.
Changes in diisopropylfluorophosphate (DFP)-binding proteins during development and senescence of spinach (Spinacia oleracea) leaves were followed using [3H]DFP and sodium dodecylsulfate-polyacrylamide gel electrophoresis-fluorography. Experiments using a series of aging stages of leaves attached to plants and ones with detached leaves stored in the dark both showed that a protein of 38 kilodaltons was the only major DFP-binding protein in the membrane fraction and that its DFP-binding increased markedly as senescence proceeded, corresponding with the degradation of leaf protein. DFP binding to the 38-kilodalton protein was not affected by membrane solubilization with Triton X-100, and gradually decreased upon preservation of the membranes. The DFP binding was inhibited completely by phenylmethane-sulfonyl fluoride and slightly by p-chloromercuribenzoic acid, suggesting a serine protease-like character of the protein and a possible contribution of SH residues to the binding. Both differential and Percoll-gradient centrifugation indicated that the 38-kilodalton protein was localized in thylakoid membranes. The sedimentation behavior of the detergent-solubilized protein indicated that it belongs to a complex different from photosystem I, photosystem II, or coupling factor 1 of the ATP-synthesizing complex.  相似文献   

4.
5.
The observed increase of phenolase activity and of its rate of activation during spinach leaf senescence is due to reduced binding of latent phenolase to the thylakoid membranes and not to de novo synthesis. The same amount of phenolase which is active in isolated thylakoid membranes from senescent leaves can be found in the membranes of non-senescent leaves after activation of latent enzyme. Tracer experiments give evidence that one multiple form which is responsible for the bulk activity in senescent leaves, is synthesized before, but not after the onset of senescence, indicating that pre-existing latent phenolase is converted to easily activating forms.  相似文献   

6.
7.
This investigation determined whether thylakoid proteins would be degraded more rapidly or not in senescing wheat (Triticum aestivum L. em. Thell.) leaves concurrently exposed to high temperatures. Excised leaves were pulse-labelled with [35S]-methionine for a 12 h period, and then incubated at 22,32 or 42°C for 0, 1, 2, or 3 d, before extracting a thylakoid enriched membrane sample. After electrophoretic separation, two prominent [35S]-labelled protein bands were chosen for further analyses. Band A contained the D-1 thylakoid protein and band B contained thylakoid proteins of the light harvesting complex (LHCII) associated with photosystem II (PSII). Total protein, [35S]-labelled protein, band A protein, and band B protein within the thylakoid enriched membrane samples were measured. Unlabelled thylakoid enriched membrane samples, extracted from leaves given similar treatments, were used to measure uncoupled whole-chain and photosystem II (PSII) electron transport and chlorophyll fluorescence. Accentuated decline in whole-chain and PSII electron transport, increasing Fo values, and decreasing Fmax values were a result of high temperature injury in leaves treated at 42°C. None of the thylakoid enriched membrane protein fractions were degraded more rapidly in high-temperature treated leaves. Degradation of the total [35S]-labelled membrane proteins and band B was inhibited by the 42°C treatment. The results indicate that high temperature stress may disrupt some aspects of normal senescence.  相似文献   

8.
应用蛋白质免疫杂交技术分析了永绿色基因(Stay-green Rice,SGR)突变和超表达对水稻(Oryza sativa)叶片类囊体蛋白质降解的影响.结果表明,在正常生长条件下,SGR超表达降低了光系统Ⅱ(PSⅡ)、光系统Ⅰ(PS Ⅰ)和电子传递链等的蛋白质含量.暗诱导衰老处理时,SGR突变延缓了PSⅠ和PSⅡ的蛋...  相似文献   

9.
10.
psbA in Synechocystis 6803 was found to belong to a small multigene family with three copies. The psbA gene family was inactivated in vitro by insertation of bacterial drug resistance markers. Inactivation of all three genes resulted in a transformant that is unable to grow photosynthetically but can be cultured photoheterotrophically. This mutant lacks oxygen evolving capacity but retains photosystem I activity. Room temperature measurements of chlorophyll a fluorescence induction demonstrated that the transformant exhibits a high fluorescence yield with little or no variable fluorescence. Immunoblot analyses showed complete loss of the psbA gene product (the DI polypeptide) from thylakoid membranes in the transformant. However, the extrinsic 33 kilodalton polypeptide of the water-splitting complex of photosystem II, is still present. The results indicate that assembly of a partial photosystem II complex may occur even in the absence of the intrinsic D1 polypeptide, a protein implicated as a crucial component of the photosystem II reaction center.  相似文献   

11.
12.
Ethylene enhanced the senescence of cucumber (Cucumis sativus L. cv `Poinsett 76') cotyledons. The effect of 10 microliters per liter ethylene was inhibited by 1 millimolar silver thiosulfate, an inhibitor of ethylene action. An increase in proteins with molecular weights of 33 to 30 kilodaltons and lower molecular weights (25, 23, 20, 16, 12, and 10 kilodaltons) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after ethylene enhanced senescence. The measurement of DNase and RNase activity in gels indicated that these new proteins were not nucleases. Two proteins from ethylene-treated cotyledons were purified on the basis of their association with a red chromaphore and subsequently were identified as peroxidases. The molecular weights and isoelectric points (pI) of two of these peroxidases were 33 kilodaltons (cationic, pI = 8.9) and 60 kilodaltons (anionic, pI = 4.0). The observation that [35S]Na2SO4 was incorporated into these proteins during ethylene-enhanced senescence suggests that these peroxidases represent newly synthesized proteins. Antibodies to the 33-kilodalton peroxidase precipitated two in vitro translation products from RNA isolated from ethylene-treated but not from control cucumber seedlings. This indicates that the increase in 33-kilodalton peroxidase activity represents de novo protein synthesis. Both forms of peroxidase degraded chlorophyll in vitro, which is consistent with the hypothesis that peroxidases have catabolic or scavenging functions in senescent tissues.  相似文献   

13.
14.
15.
The 'stay-green' mutation cytG in soybean ( Glycine max ) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b 6/ f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degradation of PSII reaction centre proteins in cytG was light dependent. Illumination of mature and senescent leaves of wild-type soybean in the presence of an inhibitor (lincomycin) of chloroplast protein synthesis revealed that senescence per se did not affect the rate of photoinhibition in leaves. Likewise, mature leaves of the cytG mutant did not show more photoinhibition than wild-type leaves. However, in senescent cytG leaves, photoinhibition proceeded more rapidly than in the wild-type. We conclude that the cytG mutation enhances photoinhibition in senescing leaves, and photoinhibition causes the rapid loss of PSII reaction-centre proteins during senescence in cytG .  相似文献   

16.
17.
The kinetics of 685 nm chlorophyll fluorescence emission weremeasured at 20 °C following illumination of primary leavesof P. vulgaris. During foliar senescence, a large reductionwas observed in the maximal level of fluorescence emission (P)of the induction curve, normalized with respect to the minimallevel (O), and in the time taken to reach P. This suggests thatfewer plastoquinone (PQ) molecules were able to accept electronsfrom each photosystem two (PS II) reaction centre in older leaves.Measurements of fluorescence emission at 77 °K indicatedthat the primary photochemical quantum yield of the PS II reactioncentres remained constant during senescence. The redox stateof the PQ pool was estimated throughout the induction curveat 20 °C. In both mature and senescent leaves PQ was highlyreduced at P. There followed a reoxidation of PQ in the matureleaves, but in the old leaves the PQ pool remained reduced.This indicates that the rate of electron flow from PQ to photosystemone (PS I) decreased considerably during senescence. Fluorescencewas quenched from P to a steady state level (T) in leaves ofall ages, and this was associated with a redistribution of excitationin favour of PS I. Since, in senescent leaves, changes in theredox state of PQ were absent, it is suggested that quenchingresulted from the generation of proton and ion gradients acrossthe thylakoid membranes, and the synthesis of ATP.  相似文献   

18.
During senescence of primary bean leaves (Phaseolus vulgaris), there are differential changes in the rates at which thylakoid proteins are synthesized. In particular, synthesis of the 32 kD herbicide-binding protein continues throughout senescence, whereas formation of the and subunits of ATPase, the 68 kD photosystem I reaction center polypeptide, cytochrome f, cytochrome b6 and the structural apoprotein of the lightharvesting chlorophyll protein complex (LHCP) declines. Pulse-chase experiments with intact leaves indicated rapid degradation of the 32 kD protein, which is consistent with its known rapid rate of turnover. This degradation was light-dependent and inhibited by DCMU, and the kinetics of degradation were similar for young and senescent membranes. In Coomassie-stained gels, the 68 kD reaction center polypeptide of photosystem I, the and subunits of ATPase and the LHCP were the dominant proteins for all ages of membranes. Western blot analysis indicated that cytochrome f and cytochrome b6 are selectively depleted during senescence. The data have been interpreted as indicating that translational disruptions in both the cytoplasmic and chloroplastic compartments may contribute to the decline in photosynthetic electron transport in the senescing leaf.  相似文献   

19.
Soybean plants (Glycine max [L.] Merr. cv Clark) carrying nuclear and cytoplasmic “stay-green” mutations, which affect senescence, were examined. Normally, the levels of chlorophyll (Chl) a and b decline during seedfill and the Chl a/b ratio decreases during late pod development in cv Clark. Plants homozygous for both the d1 and d2 recessive alleles, at two different nuclear loci, respectively, retained most (64%) of their Chl a and b and exhibited no change in their Chl a/b ratio. Combination of G (a dominant nuclear allele in a third locus causing only the seed coat to stay green during senescence) with d1d2 further inhibited the loss of Chl in the leaf. Whereas the thylakoid proteins seem to be degraded in normal Clark leaves during late pod development, they were not substantially diminished in d1d2 and Gd1d2 leaves. In plants carrying a cytoplasmic mutation, cytG, Chl declined in parallel with normal cv Clark; however, the cytG leaves had a much higher level of Chl b, and somewhat more Chl a, remaining at abscission, enough to color the leaves green. In cytG, most thylakoid proteins were degraded, but the Chl a/b-binding polypeptides of the light-harvesting complex in photosystem II (LHCII), and their associated Chl a and b molecules, were not. Thus, the combination of d1 and d2 causes broad preservation of the thylakoid proteins, whereas cytG appears to selectively preserve LHCII. The cytG mutation may be useful in elucidating the sequence of events involved in the degradation of LHCII proteins and their associated pigments during senescence.  相似文献   

20.
Nie GY  Baker NR 《Plant physiology》1991,96(1):184-191
The effects of reductions in growth temperature on the development of thylakoids of maize (Zea mays var LG11) leaves are examined. Thylakoids isolated from mesophyll cells of leaves grown at 17° and 14°C, compared with 25°C, exhibited a decreased accumulation of many polypeptides, which was accompanied by a loss of activity of photosystems (PS) I and II. Probing the polypeptide profiles with a range of antibodies specific for thylakoid proteins demonstrated that a number of polypeptides encoded by the chloroplast genome failed to accumulate at low temperatures. Although thylakoid protein synthesis was reduced severely at 14°C compared with 25°C, major synthesis of both chloroplast and nuclear encoded polypeptides was detected. It is suggested that the lack of accumulation of some thylakoid proteins at low temperatures may be due to an inability to stabilize the proteins in the membranes. A number of thylakoid polypeptides were found to appear as the growth temperature was decreased. Analyses of pigments and polypeptides demonstrated that decreases in the photosystem reaction center core complexes occur relative to the light harvesting complex associated with PS II at reduced growth temperatures. Differential effects on the development of PSI and PSII were also observed, with PSII activity being preferentially reduced. Reductions in PSII content and activity occurred in parallel with decreases in the quantum yield and light-saturated rate of CO2 assimilation. Fractionation of thylakoid pigment-protein complexes showed that the ratio of monomeric:oligomeric form of the light harvesting complex associated with PSII increased at low growth temperature, which is consistent with a chill-induced modification of thylakoid organization. Many, but not all, of the characteristic changes in thylakoid protein metabolism, which were observed when leaves were grown at low temperatures in controlled environments, were identified in leaves of a field maize crop during the early growing season when low temperatures were experienced by the crop. Chill-induced perturbations of thylakoid development can occur in the field in temperate regions and may have implications for the photosynthetic productivity of the crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号