首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Camire RM  Larson PJ  Stafford DW  High KA 《Biochemistry》2000,39(46):14322-14329
Factor Xa is the serine protease component of prothrombinase, the enzymatic complex responsible for thrombin generation. Production of recombinant factor X/Xa has proven to be difficult because of inefficient gamma-carboxylation, a critical post-translational modification. The affinities of the vitamin K-dependent propeptides for the gamma-carboxylase vary over 2 logs, with the propeptide of factor X having the highest affinity followed by the propeptides of factor VII, protein S, factor IX, protein C, and prothrombin [Stanley, T. B. (1999) J. Biol. Chem. 274, 16940-16944]. On the basis of this observation, it was hypothesized that exchanging the propeptide of factor X with one that binds the gamma-carboxylase with a reduced affinity would enhance gamma-carboxylation by allowing greater substrate turnover. A chimeric cDNA consisting of the human prothrombin signal sequence and propeptide followed by mature human factor X was generated and stably transfected into HEK 293 cells, and modified factor X was purified from conditioned medium. The results indicate that on average 85% of the total factor X produced with the prothrombin propeptide was fully gamma-carboxylated, representing a substantial improvement over a system that employs the native factor X propeptide, with which on average only 32% of the protein is fully gamma-carboxylated. These results indicate that the affinity of the gamma-carboxylase for the propeptide greatly influences the extent of gamma-carboxylation. It was also observed that regardless of which propeptide sequence is directing gamma-carboxylation (factor X or prothrombin), two pools of factor X are secreted; one is uncarboxylated and a second is fully gamma-carboxylated, supporting the notion that the gamma-carboxylase is a processive enzyme.  相似文献   

3.
Homologous "propeptide" regions are present in a family of vitamin K-dependent mammalian proteins, including clotting factors II, VII, IX, X, protein C, protein S and bone "gla" proteins. To test the hypothesis that the propeptide is a signal for the correct gamma-carboxylation of the adjacent gamma-carboxy region, we have mutated amino acid -4 of human factor IX from an arginine to a glutamine residue, by M13-directed site-specific mutagenesis of a cDNA clone. After expression of mutant factor IX in dog kidney cells, we find that it is secreted into the medium in a precursor form containing the propeptide, and is inefficiently gamma-carboxylated compared to the control, wild-type, recombinant factor IX. This result supports the hypothesis that the propeptide region is required for efficient gamma-carboxylation of factor IX in dog kidney cells. Furthermore, it confirms previous results that arginine at amino acid -4 is required for correct propeptide processing.  相似文献   

4.
The intracellular transport of prothrombin in rat has been studied and compared with the transport of albumin and transferrin. The proteins were immunoisolated from plasma samples after pulse labelling with [3H]leucine and the secretion kinetics were determined. The half-times for secretion (t1/2) were approx. 30, 53 and 75 min for albumin, prothrombin and transferrin, respectively, whereas the minimal transit time for prothrombin was approx. 30 min, and those for albumin and transferrin 15-20 min. After injection of vitamin K-1 into warfarin-treated rats, the accumulated prothrombin precursor was gamma-carboxylated and secreted with a t1/2 of 37 min. This indicates that the gamma-carboxylation of prothrombin in rough endoplasmic reticulum cannot account for the delay in the transport of prothrombin as compared to albumin. Comparison of the incorporation of [3H]leucine and [3H]glucosamine into plasma prothrombin and transferrin suggested that transferrin is secreted randomly from an intracellular pool, whereas prothrombin is transported in a more orderly sequence. Moreover, treatment of rough microsomes with 0.05% sodium deoxycholate indicated that prothrombin is more tightly associated with the membranes of rough endoplasmic reticulum than albumin and transferrin.  相似文献   

5.
Human protein C (HPC) undergoes several post-translational modifications, including gamma-carboxylation, N-linked glycosylation, and internal proteolytic processing. We have utilized a recombinant human kidney cell line (293) secreting correctly modified HPC (rHPC) to study the processing reactions for the modification of this complex protein. gamma-Carboxylation was shown to proceed via a vitamin K-dependent pathway and was required for both efficient secretion and anticoagulant activity. rHPC was rapidly secreted following the addition of vitamin K to depleted cells, and secretion was not inhibited by cyclohexamide indicating that non gamma-carboxylated rHPC accumulates as an intracellular releasable pool. However, in cells grown in the presence of vitamin K, the majority of intracellular rHPC was gamma-carboxylated, suggesting that this post-translational modification is not rate limiting for secretion under conditions optimal for vitamin K-dependent carboxylation. Nonglycosylated rHPC was found to be secreted inefficiently, and processing of the N-linked core in the endoplasmic reticulum, but not in the Golgi, was required for secretion. Further, the intracellular rHPC present in vitamin K-supplemented cells was core glycosylated, but not processed past the high mannose step. gamma-Carboxylation occurred after core glycosylation, indicating that this modification is not cotranslational. Further, glycosylation and gamma-carboxylation were not coupled and did not need to proceed sequentially. Proteolytic processing of the internal KR dipeptide was found to occur late in the secretion pathway, and the cleavage was calcium-dependent. The secretion rate of rHPC was also calcium-dependent but was independent of the calcium effect on internal KR dipeptide removal, indicating that cleavage is not required for efficient secretion. Our results define the sequence of processing events, the subcellular localization of the processing reactions, and the rate-limiting steps in the secretion pathway for this complex protein.  相似文献   

6.
Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VIIa, participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VIIa molecule, namely, 10 gamma-carboxylated, N-terminally located glutamic acid residues, 1 beta-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VIIa as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VIIa. By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradations, the protein backbone of recombinant factor VIIa was found to be identical with human factor VIIa. Neither recombinant factor VIIa nor human plasma factor VIIa was found to contain beta-hydroxyaspartic acid. In human plasma factor VIIa, the 10 N-terminally located glutamic acid residues were found to be fully gamma-carboxylated whereas 9 full and 1 partial gamma-carboxylated residues were found in the corresponding positions of the recombinant factor VIIa molecule. Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VIIa. In the recombinant factor VIIa, asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VIIa and human plasma factor VIIa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
cDNAs which encode bone gla protein (BGP), an abundant gamma-carboxylated protein of bone, have been cloned from rat and mouse osteosarcoma cell lines. DNA sequence analysis indicates that the cDNAs code for both the 50 (rat) or 46 (mouse) amino acids of the mature proteins and a 49 amino acid leader peptide. The leader peptide of each BGP includes the expected hydrophobic signal sequence and an apparent pro sequence. Although there is no homology between the mature forms of BGP and the gamma-carboxylated clotting factors, we note that there is some homology between their leader peptides. These cDNAs have been used to examine the modulation of BGP mRNA levels by osteoblastic cells in response to hormones. The cDNAs have also allowed isolation of the human BGP gene; analysis of this gene indicates the presence of four exons. Comparison of the exon structure of the BGP gene and the Factor IX (a gamma-carboxylated clotting factor) gene suggests that the exons encoding the part of the leader peptides presumably directing gamma-carboxylation arose from a common ancestral sequence.  相似文献   

8.
A system is described for producing recombinant factor X with properties very similar to human plasma factor X. Optimization of the expression system for factor X resulted in the finding that human kidney cells (293 cells) are superior to the widely utilized baby hamster kidney cells (BHK cells) for the expression of functional factor X. It was also determined that production of factor X by 293 cells requires the substitution of the −2 residue (Thr → Arg) which affords the removal of the factor X propeptide. Purification of recombinant and plasma factor X is accomplished using a calcium-dependent monoclonal antibody directed against the gla domain. The proteins are comparable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The rate and extent of activation by the factor X coagulant protein from Russell's viper venom and by factors IXa and VIIIa are similar; activation of the recombinant protein by VIIa and tissue factor is mildly faster. The activated enzymes have the same activity toward a chromogenic substrate and the biologic substrate, prothrombin. Both enzymes have the same apparent affinity for the activated platelet surface as judged by their ability to activate prothrombin. Finally, inhibition by antithrombin, with or without heparin, and inhibition by the tissue factor pathway inhibitor are equivalent. Recombinant factor X produced by this method is therefore well suited for probing structure–function relationships by mutational analysis.  相似文献   

9.
Several strains of Staphylococcus aureus secrete a protein, staphylocoagulase, that binds stoichiometrically to human prothrombin, resulting in a coagulant complex designated staphylothrombin. In the present study, staphylocoagulase was digested with alpha-chymotrypsin and the resulting fragments were isolated by gel filtration. One fragment (Mr 43,000) exhibited a high affinity for human prothrombin (Kd = 1.7 X 10(-9) M), which is comparable to the affinity observed using intact staphylocoagulase (Kd = 4.6 X 10(-10) M). A complex of the Mr 43,000 fragment and prothrombin possessed both clotting and amidase activity essentially identical to that observed in a complex of intact staphylocoagulase and prothrombin. A second fragment (Mr 30,000) exhibited weaker affinity for prothrombin (Kd = 1.2 X 10(-7) M). While clotting activity was not observed with a complex of this fragment and prothrombin, it nonetheless possessed a weak amidase activity. A third fragment (Mr 20,000) was found to bind to prothrombin, but the resultant complex did not exhibit clotting or amidase activity. Amino-terminal sequence analyses of these staphylocoagulase fragments revealed that the Mr 43,000 fragment constitutes the amino-terminal portion of staphylocoagulase and also contains the Mr 30,000 and 20,000 fragments. Moreover, the amino-terminal sequence of the Mr 20,000 fragment was identical to that observed for the Mr 30,000 fragment. From these results, we conclude that the functional region of staphylocoagulase for binding and activation of human prothrombin is localized in the amino-terminal region of the intact bacterial protein.  相似文献   

10.
11.
Some recombinant vitamin K-dependent blood coagulation factors (factors VII, IX, and protein C) have become valuable pharmaceuticals in the treatment of bleeding complications and sepsis. Because of their vitamin K-dependent post-translational modification, their synthesis by eukaryotic cells is essential. The eukaryotic cell harbors a vitamin K-dependent gamma-carboxylation system that converts the proteins to gamma-carboxyglutamic acid-containing proteins. However, the system in eukaryotic cells has limited capacity, and cell lines overexpressing vitamin K-dependent clotting factors produce only a fraction of the recombinant proteins as fully gamma-carboxylated, physiologically competent proteins. In this work we have used recombinant human factor IX (r-hFIX)-producing baby hamster kidney (BHK) cells, engineered to stably overexpress various components of the gamma-carboxylation system of the cell, to determine whether increased production of functional r-hFIX can be accomplished. All BHK cell lines secreted r-hFIX into serum-free medium. Overexpression of gamma-carboxylase is shown to inhibit production of functional r-hFIX. On the other hand, cells overexpressing VKORC1, the reduced vitamin K cofactor-producing enzyme of the vitamin K-dependent gamma-carboxylation system, produced 2.9-fold more functional r-hFIX than control BHK cells. The data are consistent with the notion that VKORC1 is the rate-limiting step in the system and is a key regulatory protein in synthesis of active vitamin K-dependent proteins. The data suggest that overexpression of VKORC1 can be utilized for increased cellular production of recombinant vitamin K-dependent proteins.  相似文献   

12.
The vitamin K-dependent (VKD) carboxylase converts clusters of Glu residues to gamma-carboxylated Glu residues (Glas) in VKD proteins, which is required for their activity. VKD precursors are targeted to the carboxylase by their carboxylase recognition site, which in most cases is a propeptide. We have identified a second tethering site for carboxylase and VKD proteins that is required for carboxylase activity, called the vitamin K-dependent protein site of interaction (VKS). Several VKD proteins specifically bound an immobilized peptide comprising amino acids 343-355 of the human carboxylase (CVYKRSRGKSGQK) but not a scrambled peptide containing the same residues in a different order. Association with the 343-355 peptide was independent of propeptide binding, because the VKD proteins lacked the propeptide and because the 343-355 peptide did not disrupt association of a propeptide factor IX-carboxylase complex. Analysis with peptides that overlapped amino acids 343-355 indicated that the 343-345 CVY residues were necessary but not sufficient for prothrombin binding. Ionic interactions were also suggested because peptide-VKD protein binding could be disrupted by changes in ionic strength or pH. Mutagenesis of Cys(343) to Ser and Tyr(345) to Phe resulted in 7-11-fold decreases in vitamin K epoxidation and peptide (EEL) substrate and carboxylase carboxylation, and kinetic analysis showed 5-6-fold increases in K(m) values for the Glu substrate. These results suggest that Cys(343) and Tyr(345) are near the catalytic center and affect the active site conformation required for correct positioning of the Glu substrate. The 343-355 VKS peptide had a higher affinity for carboxylated prothrombin (K(d) = 5 microm) than uncarboxylated prothrombin (K(d) = 60 microm), and the basic VKS region may also facilitate exiting of the Gla product from the catalytic center by ionic attraction. Tethering of VKD proteins to the carboxylase via the propeptide-binding site and the VKS region has important implications for the mechanism of VKD protein carboxylation, and a model is proposed for how the carboxylase VKS region may be required for efficient and processive VKD protein carboxylation.  相似文献   

13.
The modification of glutamic acid residues to gamma-carboxyglutamic acid (Gla) is a post-translational modification catalyzed by the vitamin K-dependent enzyme gamma-glutamylcarboxylase. Despite ubiquitous expression of the gamma-carboxylation machinery in mammalian tissues, only 12 Gla-containing proteins have so far been identified in humans. Because bone tissue is the second most abundant source of Gla-containing proteins after the liver, we sought to identify Gla proteins secreted by bone marrow-derived mesenchymal stromal cells (MSCs). We used a proteomics approach to screen the secretome of MSCs with a combination of two-dimensional gel electrophoresis and tandem mass spectrometry. The most abundant Gla-containing protein secreted by MSCs was identified as periostin, a previously unrecognized gamma-carboxylated protein. In silico amino acid sequence analysis of periostin demonstrated the presence of four consensus gamma-carboxylase recognition sites embedded within fasciclin-like protein domains. The carboxylation of periostin was confirmed by immunoprecipitation and purification of the recombinant protein. Carboxylation of periostin could be inhibited by warfarin in MSCs, demonstrating its dependence on the presence of vitamin K. We were able to demonstrate localization of carboxylated periostin to bone nodules formed by MSCs in vitro, suggesting a role in extracellular matrix mineralization. Our data also show that another fasciclin I-like protein, betaig-h3, contains Gla. In conclusion, periostin is a member of a novel vitamin K-dependent gamma-carboxylated protein family characterized by the presence of fasciclin domains. Furthermore, carboxylated periostin is produced by bone-derived cells of mesenchymal lineage and is abundantly found in mineralized bone nodules in vitro.  相似文献   

14.
In this study, a continuous culture system was applied to mammalian cells on large scale, and polyethyleneimine (PEI) mediated transient gene expression (TGE). PEI MAX 40,000 was chosen as a superior reagent from three types of PEI. The cell cycle distribution of cells in batch and continuous cultures was determined, in which the effects of cell cycle distribution on transfection efficiency, post-transfection proliferation and recombinant prothrombin expression were evaluated. Compared with cells from end-log and plateau phase in batch culture, cells from mid-log phase possessed a larger fraction of S and G2/M phase cells and a smaller fraction of G1 phase cells. In the continuous culture, the fraction of cells in the S and G2/M phases increased and the fraction of cells in the G1/G0 phase decreased with increasing dilution rates. Cells from the continuous culture run at highest dilution rate had excellent proliferation, transfection efficiency and protein expression. These results were confirmed by transfecting cells synchronized to different phases. The G2/M arrested cells exhibited a nearly 10-fold increase in recombinant human prothrombin production relative to that of non-dividing cells. The use of continuous culture for large scale transfection demonstrated a better cell physiological state for TGE process.  相似文献   

15.
Family 3A mammalian liver cytochromes P450 (3A1, rat; 3A3/4, human) catalyze the 6 beta-hydroxylation of endogenous steroids and are steroid inducible. Our recent finding that A6 cells (a toad kidney epithelial cell line) contain corticosterone 6 beta-hydroxylase activity as a steroid-inducible microsomal cytochrome P450 raised the possibility that corticosterone 6 beta-hydroxylase activity in the A6 cells is catalyzed by a member of the 3A family. We found that incubation of A6 cell microsomes from dexamethasone-induced cells with antibodies against family 3A proteins specifically inhibited corticosterone 6 beta-hydroxylase activity. Microsomes from A6 cells analyzed on immunoblots developed with family 3A specific antibodies revealed immunoreactive proteins and treatment of A6 with corticosterone or dexamethasone increased the amounts of 3A immunoreactive protein(s). Furthermore, A6 RNA hybridized with 3A cDNAs on Northern blots and genomic DNA from A6 cells hybridized with a 3A cDNA on a Southern blot. Thus, toad kidney A6 cells express a family 3A P450 that is immunochemically, functionally, and genetically related to the mammalian liver 3A proteins. Prompted by these findings in amphibian kidney, we examined mammalian kidney for evidence of family 3A proteins. Immunocytochemical studies of frozen cryostat sections of normal adult rat kidney incubated with 3A1 antibody showed immunoreactivity only with collecting duct. Immunoblot analysis of human kidney microsomes found three protein bands representing 3A3/4, 3A5, and a 53-kDa Mr protein immunoreactive with human 3A antibody. An unexpected finding was the polymorphic expression of 3A3/4 in human kidney with only one of seven (14%) adult human kidneys tested expressing this protein while 3A5, a protein which is polymorphically expressed in adult human livers, was routinely present in the adult human kidney samples tested. Since human fetal liver contains a family 3A P450 we examined human fetal kidney microsomes by immunoblot analysis with human liver 3A antibody and found expression of a protein tentatively identified as 3A7. Thus, like A6 amphibian cells, family 3A P450 proteins and mRNAs are prominent, functional components in the kidney of mammals, including man.  相似文献   

16.
L Zhang  F J Castellino 《Biochemistry》1990,29(48):10828-10834
Site-specific mutagenesis has been employed to alter the cDNA of human protein C (PC), such that the gamma-carboxyglutamic acid (gamma) pair at positions 6 and 7 of the recombinant (r) protein would be changed to aspartic acid residues. This variant, [gamma 6D, gamma 7D]r-PC, and its wild-type (wt) counterpart have been expressed in human kidney 293 cells. After purification, forms of wtr-PC that were fully gamma-carboxylated and beta-hydroxylated and of [gamma 6D, gamma 7D]r-PC that lacked only the two altered gamma-residues at amino acid sequence positions 6 and 7 were obtained. Subsequent to its conversion to activated PC (APC), [gamma 6D, gamma 7D]r-APC displayed a greatly reduced activity in the activated partial thromboplastin time of PC-deficient plasma, as compared to wtr-APC and human plasma APC. In addition, the activity of [gamma 6D, gamma 7D]r-APC toward inactivation of purified human factor VIII was reduced to less than 5% of that of wtr-APC and human plasma APC. These results, with the first reported mutations at gamma-residues of PC produced by recombinant DNA technology, indicate that the paired gamma-residues at positions 6 and 7, which are highly conserved in all vitamin K dependent coagulation proteins, are very important to generation of fully functional APC. Additional results demonstrate further that lack of gamma-carboxylation at positions 6 and 7 of PC does not substantially affect this same processing reaction at other relevant glutamic acid residues.  相似文献   

17.
An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the final destination.  相似文献   

18.
Purification of recombinant human tissue factor   总被引:7,自引:0,他引:7  
Tissue factor (TF) is a 263 amino acid membrane-bound procoagulant protein that serves as a cofactor for the serine protease factor VII (fVII). Recombinant human TF (rTF) produced in both human kidney 293 cells and Escherichia coli has been immunoaffinity purified by using a TF-specific monoclonal antibody. Recombinant TF produced in 293 cells is glycosylated and migrates on reducing SDS-PAGE with an apparent molecular weight (Mr) of 45K. Some interchain disulfide-bonded rTF dimers are observed under nonreducing conditions. The E. coli produced rTF has a molecular weight of 33K and 35K, with the 33K band missing nine amino acids at the carboxy terminus. Although the E. coli produced rTF does not contain any carbohydrate, it is fully functional in both a chromogenic assay and a one-stage prothrombin time assay. A variant has been constructed wherein the cytoplasmic cysteine (residue 245) has been mutagenized to a serine residue. The amount of disulfide-linked aggregates is dramatically reduced following immunoaffinity purification of this four-cysteine variant (C2455), which is active in the chromogenic and prothrombin time assays.  相似文献   

19.
Prominent vasculopathy in Fabry disease patients is caused by excessive intracellular accumulation of globotriaosylceramide (GL-3) throughout the vascular endothelial cells causing progressive cerebrovascular, cardiac and renal impairments. The vascular lesions lead to myocardial ischemia, atherogenesis, stroke, aneurysm, thrombosis, and nephropathy. Hence, injury to the endothelial cells in the kidney is a key mechanism in human glomerular disease and endothelial cell repair is an important therapeutic target. We investigated the mechanism of uptake of α-galactosidase A (α-Gal A) in renal endothelial cells, in order to clarify if the recombinant enzyme is targeted to the lysosomes via the universal mannose 6-phosphate receptor (M6PR) and possibly other receptors. Immunohistochemical localization of infused recombinant α-Gal A in a renal biopsy from a classic Fabry disease patient showed that recombinant protein localize in the endothelial cells of the kidney. Affinity purification studies using α-Gal A resins identified M6PR and sortilin as α-Gal A receptors in cultured glomerular endothelial cells. Immunohistochemical analyses of normal human kidney with anti-sortilin and anti-M6PR showed that sortilin and M6PR were expressed in the endothelium of smaller and larger vessels. Uptake studies in cultured glomerular endothelial cells of α-Gal A labeled with fluorescence and (125)I showed by inhibition with RAP and M6P that sortilin and M6PR mediated uptake of α-Gal A. Biacore studies revealed that α-Gal A binds to human M6PR with very high affinity, but M6PR also binds to sortilin in a way that prevents α-Gal A binding to sortilin. Taken together, our data provide evidence that sortilin is a new α-Gal A receptor expressed in renal endothelial cells and that this receptor together with the M6PR is able to internalize circulating α-Gal A during enzyme replacement therapy in patients with Fabry disease.  相似文献   

20.
目的:构建以HBc为载体的甲型流感病毒HA和M2e流感通用疫苗(Flu@uV),利用大肠杆菌BL21(DE3)表达系统,进行初步的蛋白表达及纯化。在此基础上,构建DNA流感通用疫苗。方法:利用全基因合成的序列为模板,成功构建HA-M2e-HBc、M2e-HBc、HBc、3M2e-HBc和3HA-3M2e-HBc基因的重组质粒,并在大肠杆菌中表达,经SDS-PAGE、Western blot和电镜检测其表达。将纯化的蛋白与弗氏佐剂共同免疫小鼠,取小鼠外周血进行流式细胞分析。通过荧光分析和Western blot初步验证DNA流感通用疫苗在人源胚胎肾细胞(HEK293T)中的表达情况。结果:成功表达纯化了HA-M2e-HBc、M2e-HBc、HBc和3M2e-HBc四种蛋白,经电镜观察到30nm左右的蛋白纳米颗粒样结构。小鼠外周血流式细胞分析显示HBc和3M2e-HBc可以增加小鼠的免疫力,而HA-M2e-HBc和M2e-HBc对小鼠免疫力的提高没有影响。通过荧光检测和Western blot检测说明DNA流感通用疫苗在真核细胞中成功表达。结论:成功构建HBc与甲型流感病毒HA和M2e的病毒样颗粒,为流感通用疫苗的研制奠定了重要基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号