首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the dispersion and aggregation of carotenoid droplets in goldfish xanthophores are regulated, respectively, by phosphorylation and dephosphorylation of a carotenoid droplet protein p57. There is a basal level of p57 phosphorylation of p57 in unstimulated cells, which is greatly stimulated by adrenocorticotropic hormone (ACTH) or cyclic adenosine monophosphate (cAMP) acting via cAMP-dependent protein kinase. We have also observed that, in permeabilized xanthophores, pigment dispersion can be induced when cAMP is replaced by fluoride. Since p57 has multiple phosphorylation sites, there is the question of whether all p57 phosphorylation is by cAMP-dependent protein kinase or whether phosphorylation by cAMP-independent protein kinase coupled with inhibition of phosphatase activity by fluoride can replace cAMP-dependent protein kinase and that the ability of fluoride to replace cAMP for pigment dispersion in permeabilized cells is probably due to activation of adenylcyclase. We also show that ACTH causes an approximately threefold increase in the level of cAMP in these cells.  相似文献   

2.
In intact goldfish xanthophores, the phosphorylation of a pigment organelle (carotenoid droplet) protein, p57, appears to play an important role in adrenocorticotropin (ACTH)- or cAMP-induced pigment organelle dispersion while the dephosphorylation of this protein upon withdrawal of ACTH or cAMP is implicated in pigment aggregation. In this paper, we report the cAMP-dependent phosphorylation of this protein in cell-free extracts of xanthophores as determined by the incorporation of 32P from [gamma-32P]ATP. As is the case in intact cells, p57 is the predominant protein phosphorylated in the presence of cAMP. The cAMP-dependent protein kinase which phosphorylates p57 is not bound to the isolated organelles but is found in the soluble portion of the cell extracts. Hence, the phosphorylation of p57 requires the carotenoid droplets bearing the substrate, soluble extract containing the kinase, cAMP (half-maximal activation at 0.5 microM), and Mg2+ (optimal at 5 mM or higher). The presence of protein phosphatase(s) in these extracts was shown indirectly by the stimulation of phosphorylation by fluoride. The phosphorylation of p57 does not appear to require a cell-specific kinase as soluble extracts of goldfish dermal nonpigment cells also phosphorylate p57 associated with isolated carotenoid droplets. Furthermore, using a constant amount of carotenoid droplets, a linear relationship was demonstrated between the rate of p57 phosphorylation and the amount of extract present in the assays. These results suggest that p57 is phosphorylated directly by a cAMP-dependent protein kinase and that the activity of this enzyme is important in regulating the intracellular movement of the pigment organelles of the xanthophore.  相似文献   

3.
The mitochondria, the microsomes and the cystosol have been described as possible sites of cAMP-dependent phosphorylation. However, there has been no direct demonstration of a cAMP-dependent kinase associated with the activation of the side-chain cleavage of cholesterol. We have investigated the site of action of the cAMP-dependent kinase using a sensitive cell-free assay. Cytosol derived from cells stimulated with ACTH or cAMP was capable of increasing progesterone synthesis in isolated mitochondria when combined with the microsomal fraction. Cytosol derived from cyclase or kinase of negative mutant cells did not. Cyclic AMP and cAMP-dependent protein kinase stimulated in vitro a cytosol derived from unstimulated adrenal cells. This cytosol was capable of stimulating progesterone synthesis in isolated mitochondria. Inhibitor of cAMP-dependent protein kinase abolished the effect of the cAMP. ACTH stimulation of cytosol factors is a rapid process observable with a half maximal stimulation at about 3 pM ACTH. The effect was also abolished by inhibitor of arachidonic acid release. The function of cytosolic phosphorylation is still unclear. The effect of inhibitors of arachidonic acid release, and the necessity for the microsomal compartment in order to stimulate mitochondrial steroidogenesis, suggest that the factor in the cytosol may play a role in arachidonic acid release.  相似文献   

4.
As in other cells, cAMP-dependent (protein kinase A) and calcium-dependent protein kinases are present in the rabbit peritoneal neutrophil. The major substrates for protein kinase A in the cytosol of rabbit peritoneal neutrophil is a 43 kDa protein which appears to be actin (pI 5.7). The other substrates for protein kinase A in the cytosol are very acidic proteins with molecular weights of 135 000 (pI 4.6) and 130 000 (pI 4.8). Two classes of calcium-dependent protein kinases are present in the rabbit peritoneal neutrophil: one is calcium, calmodulin-dependent, the other is calcium, phosphatidylserine-dependent. Phosphatidylserine appears to be much more effective than calmodulin in stimulting calcium-dependent protein kinase activity. The phospolipid-sensitive, calcium-dependent protein kinase (protein kinase C), present only in the cytosol fraction, exhibits much higher activity than the cAMP-dependent protein kinase from the same source. At least four substrates (Mr 130 000 (pI 4.6) 43 000 (pI 4.8), 41 000 (pI 6.3) and 34 000) of the protein kinase C in the cytosol were identified. Trifluoperazine, a compound which inhibits the degranulation, aggregation and stimulated oxygen consumption of rabbit peritoneal neutrophils. (Alobaidi, T., Naccache, P.H. and Sha'afi, R.I. (1981) Biochim. Biophys. Acta 675, 316–321), also inhibits the activity of protein kinase C. The possible role of cAMP-dependent and calcium-dependent phosphorylation system in neutrophil function is discussed.  相似文献   

5.
M M Rozdzial  L T Haimo 《Cell》1986,47(6):1061-1070
Studies were conducted to investigate the molecular basis for bidirectional pigment granule transport in digitonin-lysed melanophores. Pigment granule dispersion, but not aggregation, required cAMP and resulted in the phosphorylation of a 57 kd polypeptide. cAMP-dependent protein kinase inhibitor prevented this phosphorylation as well as pigment dispersal. In contrast, both pigment aggregation and the concomitant dephosphorylation of the 57 kd polypeptide were blocked by phosphatase inhibitors. These data support a model in which pigment dispersion and aggregation require protein phosphorylation and dephosphorylation, respectively. Furthermore, studies using the ATP analog, ATP gamma S, suggest either that protein phosphorylation alone is sufficient for dispersion or that transport is mediated by a unique force-generating ATPase that can use ATP gamma S for hydrolyzable energy.  相似文献   

6.
A study is presented of the cAMP-dependent phosphorylation in bovine heart mitochondria of three proteins of 42, 16 and 6.5 kDa associated to the inner membrane. These proteins are also phosphorylated by the cytosolic cAMP-dependent protein kinase and by the purified catalytic subunit of this enzyme. In the cytosol, proteins of 16 and 6.5 kDa are phosphorylated by the cAMP-dependent kinase. It is possible that cytosolic and mitochondrial cAMP-dependent kinases phosphorylate the same proteins in the two compartments.  相似文献   

7.
Protein phosphorylation in the cytosol, membranes and nuclei of pig brain cells was investigated. Endogenous cAMP-dependent phosphorylation was observed in all fractions studied. The degree of activation of this process by cAMP was different, depending on the fraction. The molecular weights of the endogenous protein substrates were found to be equal to 60 000, 45 000 and 28 000 for the nuclei, 80 000, 71 000, 31 000, 25 000, 16 000 and 11 000 for the membranes and 280 000, 80 000, 67 000, 53 000, 32 000, 25 000 and 22 000 for cytosol. It was shown that the majority of these proteins can be phosphorylated by the exogenous cAMP-dependent pig brain protein kinase.  相似文献   

8.
Steroidogenesis is not stimulated by ACTH in the inner zone of the guinea pig adrenal cortex; adenylate cyclase is normally stimulated. To further explore the lack of a steroidogenic response to ACTH in the inner zone, cAMP-dependent protein kinase activity and protein phosphorylation were examined in the outer and inner adrenocortical zones. To summarize: total cAMP-dependent protein kinase activity was 40% higher in the outer zone than in the inner zone; of the total cAMP-dependent protein kinase activity, cytosol contained 80% for the outer and 70% for the inner zone. In both zones only the type II isozyme was present. Qualitative and quantitative differences in protein phosphorylation were noted for the two zones.  相似文献   

9.
The objective of this study was to investigate cyclic-adenosinemonophosphate (cAMP)-dependent phosphorylation in murine erythroleukemia (MEL) cells and to identify either direct substrates of cAMP-dependent kinase or downstream effectors of cAMP dependent phosphorylation with a potential function in growth and differentiation. MEL-cells rendered deficient in cAMP-dependent protein kinase (A-kinase) activity by stable transfection with DNA encoding for either a mutant regulatory subunit or a specific peptide inhibitor of A-Kinase (PKI) are unable to differentiate normally in response to chemical inducers. We have identified by 2-D Western blotting 2 phosphorylated forms of p19, a highly conserved 18-19 kDa cytosolic protein that is frequently upregulated in transformed cells and undergoes phosphorylation in mammalian cells upon activation of several signal transduction pathways. The phosphorylation of the more acidic phosphorylated form is increased in a cAMP-dependent fashion and impaired in cells deficient in cAMP-dependent kinase (A-kinase). Treatment of MEL-cells with the chemical inducer of differentiation hexamethylene-bisacetamide (HMBA) led to dephosphoryation of this phosphoform. Our data are compatible with previous observations which imply that phosphorylation of Ser 38 in p19 by p34cdc2-kinase leads to a more basic phosphoform and simultaneous phosphorylation by mitogen-activated kinase of Ser 25 in response to protein kinase C and the cAMP- dependent kinase creates the more acidic species.  相似文献   

10.
Proper chromosome condensation requires the phosphorylation of histone and nonhistone chromatin proteins. We have used an in vitro chromosome assembly system based on Xenopus egg cytoplasmic extracts to study mitotic histone H3 phosphorylation. We identified a histone H3 Ser(10) kinase activity associated with isolated mitotic chromosomes. The histone H3 kinase was not affected by inhibitors of cyclin-dependent kinases, DNA-dependent protein kinase, p90(rsk), or cAMP-dependent protein kinase. The activity could be selectively eluted from mitotic chromosomes and immunoprecipitated by specific anti-X aurora-B/AIRK2 antibodies. This activity was regulated by phosphorylation. Treatment of X aurora-B immunoprecipitates with recombinant protein phosphatase 1 (PP1) inhibited kinase activity. The presence of PP1 on chromatin suggested that PP1 might directly regulate the X aurora-B associated kinase activity. Indeed, incubation of isolated interphase chromatin with the PP1-specific inhibitor I2 and ATP generated an H3 kinase activity that was also specifically immunoprecipitated by anti-X aurora-B antibodies. Nonetheless, we found that stimulation of histone H3 phosphorylation in interphase cytosol does not drive chromosome condensation or targeting of 13 S condensin to chromatin. In summary, the chromosome-associated mitotic histone H3 Ser(10) kinase is associated with X aurora-B and is inhibited directly in interphase chromatin by PP1.  相似文献   

11.
The meiotic maturation of Xenopus laevis oocytes is induced in vitro by progesterone which interacts at the cell surface level. A cell-free membrane preparation (P-10,000) incorporated 32P from [gamma-32P]ATP, mostly into two proteins, Mr approximately 56,000 and approximately 48,000 (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Progesterone, added in vitro, specifically inhibited the phosphorylation of the Mr approximately 48,000 protein (named p48). Half-maximal inhibition of p48 phosphorylation occurred with progesterone approximately 8 microM, in good correlation with hormone concentration inducing oocyte maturation. The effect was not due to stimulation of protein phosphatase activity. The potent maturation inducers testosterone and deoxycorticosterone also inhibited p48 phosphorylation, whereas biologically inactive steroids or cholesterol did not. p48 phosphorylation was not affected by cAMP, cGMP, polyamines, calmodulin, and phospholipids + diolein. EGTA had a stimulatory effect which was reversed by added Ca2+. The inhibitory effects of progesterone and Ca2+ were additive, suggesting two distinct sites of action. Phospho-p48 was not detected in yolk platelets, microsomes, and cytosol of oocytes. Contrary to p48 itself, the p48 kinase activity was loosely associated with P-10,000. Progesterone inhibited p48 phosphorylation produced by either cytosol or exogenous pure catalytic subunit of cAMP-dependent protein kinase. Conversely, phosphorylation of casein and histones by protein kinase activity present in P-10,000 was not modified by progesterone. It is then suggested that progesterone regulates p48 phosphorylation by affecting the protein substrate in the membrane, rather than by inhibiting the protein kinase enzyme itself. The data demonstrate a direct effect (not mediated by change of protein synthesis) of steroids on p48 phosphorylation in the plasma membrane, and they suggest that this protein could be implicated in the initial action of progesterone on oocyte maturation.  相似文献   

12.
Interleukin 2 production by activated Jurkat T cells is markedly decreased by prostaglandin E2 (PGE2). The target of PGE2 action has been investigated in the present study. Among the biochemical events occurring after CD3.TCR triggering by anti-CD3 monoclonal antibody, phosphorylation of two cytosolic proteins, pp21 and pp23, was strongly inhibited by PGE2, forskolin, and 8-bromo-cAMP, whereas anti-CD3 monoclonal antibody-induced CD3.TCR modulation and Ca2+ influx were not affected. The inhibition of both pp21 and pp23 phosphorylation and interleukin 2 synthesis by PGE2 can be largely reversed by the cAMP-dependent protein kinase inhibitor, N-[2-(methylamino)-ethyl-1]-5-isoquinoline sulfonamide. Together with the demonstration of a cAMP-dependent protein kinase activity in Jurkat T cells, these results are consistent with the participation of the cAMP-dependent protein kinase mediating the inhibitory action of PGE2, probably through the inhibition of pp21 and pp23 phosphorylation. Thus, it appears that the modulation of the phosphorylation of these cytosolic proteins represents an essential step in the regulation of T lymphocyte activation.  相似文献   

13.
Summary Pancreatic islet cytosol contains a calcium-calmodulin dependent protein kinase that can mediate the phosphorylation of an endogenous protein that has an Mr of 57 000, as well as exogenous muscle pyruvate kinase (subunit Mr, 57000). EGTA and trifluoperazine decreased the phosphorylation. Alkaline inactivation of pyruvate kinase made it a better substrate for the kinase. As in rat islet cytosol, rabbit islet cytosol catalyzed the phosphorylation of a 57 000 Mr protein in the presence of calcium and calmodulin. This phosphoprotein was immunoprecipitated with anti-pyruvate kinase antibody. This is consistent with the idea that the 57 000 Mr phosphoprotein in islet cytosol is the subunit of pyruvate kinase. The paper following this paper shows that the kinetic and immunologic properties of the islet pyruvae kinase indicate it is the M2 isoenzyme and that its phosphorylation does not affect its catalytic activity.  相似文献   

14.
In goldfish xanthophores, the formation of pigment aggregate requires: 1) that a pigment organelle (carotenoid droplet) protein p57 be in the unphosphorylated state; 2) that self-association of pigment organelles occur in a microtubule-independent manner; and 3) that pigment organelles via p57 associate with microtubules. In the fully aggregated state, the pigment organelles are completely stationary. Pigment dispersion is initiated by activation of a cAMP-dependent protein kinase, which phosphorylates p57 and allows pigment dispersion via an active process dependent on F-actin and a cytosolic factor. This factor is not an ATPase, and its function is unknown. However, its abundance in different tissues parallels secretory activity of the tissues, suggesting a similarity between secretion and pigment dispersion in xanthophores. The identity of the motor for pigment dispersion is unclear. Experimental results show that pigment organelles isolated from cells with dispersed pigment have associated actin and ATPase activity comparable to myosin ATPase. This ATPase is probably an organelle protein of relative molecular mass approximately 72,000, and unlikely to be an ion pump. Isolated pigment organelles without associated actin have 5x lower ATPase activity. Whether this organelle ATPase is the motor for pigment dispersion is under investigation. The process of pigment aggregation is poorly understood, with conflicting results for and against the involvement of intermediate filaments.  相似文献   

15.
We have shown by gel filtration on Sepharose 4B at low ionic strength that casein kinases S (type 1), heparin-insensitive, and TS (type 2), heparin-inhibited, of rat liver cytosol participate in two distinct multimolecular systems, Ve/Vo = 1.25 and Ve/Vo = 1.90, respectively, both less retarded than the peak of cAMP-dependent protein kinase activity (Ve/Vo = 2.04). Both casein kinase I and casein kinase II complexes are unstable in 0.5 M NaCl, giving rise by gel filtration under these conditions to the free forms of casein kinase S (Ve/Vo = 2.37, Mr 34 000) and casein kinase TS (Ve/Vo = 2.10, Mr 130 000), respectively. In contrast, the elution volume of cAMP-dependent protein kinase activity is always the same irrespective of the ionic strength of the medium. Casein kinase I, accounting for the whole casein kinase S activity of cytosol, also contains a phosphorylatable 31-kDa protein (p31) which is a substrate of casein kinase S, since its phosphorylation is insensitive to heparin, the heat-stable inhibitor and trifluoperazine, but it is prevented by beryllium. Casein kinase II, on the other hand, apparently results from the association of the whole casein kinase TS (type 2) of rat liver cytosol with a 90-kDa protein substrate (p90) which is distinct from glycogen synthase according to their different peptide mappings. The radiolabelling of p90 is inhibited by heparin, unlabeled GTP and polyglutamates, while it is dramatically and specifically enhanced by polylysine. At least three more protein bands of Mr 58 000, 52 000 and 37 000 are phosphorylated by casein kinase TS in the casein kinase II fraction: their co-elution with casein kinase TS, however, seems to be accidental and their radiolabeling in the presence of polylysine is almost negligible compared to that of p90. It is concluded that p31 and p90 may represent specific targets of casein kinase S and casein kinase TS, respectively, whose intimate association with the enzymes could be functionally significant.  相似文献   

16.
Additional PKA phosphorylation sites in human cardiac troponin I.   总被引:2,自引:0,他引:2  
We used mass spectrometry to monitor cAMP-dependent protein kinase catalysed phosphorylation of human cardiac troponin I in vitro. Phosphorylation of isolated troponin I by cAMP-dependent protein kinase resulted in the covalent incorporation of phosphate on at least five different sites on troponin I, and a S22/23A troponin I mutant incorporated phosphates on at least three sites. In addition to the established phosphorylation sites (S22 and S23) we found that S38 and S165 were the other two main sites of phosphorylation. These 'overphosphorylation' sites were not phosphorylated sufficiently slower than S22 and S23 that we could isolate pure S22/23 bisphosphorylated troponin I. Overphosphorylation of troponin I reduced its affinity for troponin C, as measured by isothermal titration microcalorimetry. Phosphorylation of S22/23A also decreased its affinity for troponin C indicating that phosphorylation of S38 and/or S165 impedes binding of troponin I to troponin C. Formation of a troponin I/troponin C complex prior to cAMP-dependent protein kinase treatment did not prevent overphosphorylation. When whole troponin was phosphorylated by cAMP-dependent protein kinase, however, [(32)P]phosphate was incorporated only into troponin I and only at S22 and S23. Mass spectrometry confirmed that overphosphorylation is abolished in the ternary complex. Troponin I bisphosphorylated exclusively at S22 and S23 troponin I showed reduced affinity for troponin C but the effect was diminished with respect to overphosphorylated troponin I. These results show that care should be exercised when interpreting data obtained with troponin I phosphorylated in vitro.  相似文献   

17.
Mitosis-specific phosphorylation of myosin light chain kinase   总被引:4,自引:0,他引:4  
Cell cytosol preparations from mitotic HeLa cells exhibit a kinase activity that phosphorylates myosin light chain kinase (MLCK). This MLCK kinase activity is apparently distinct from the known MLCK kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, Ca(2+)-activated phospholipid-dependent protein kinase, or Ca(2+)-calmodulin-dependent protein kinase II, based on the following criteria. First, the MLCK kinase activity of mitotic cells does not respond to a variety of characteristic activators or inhibitors of these known kinases. Second, one- and two-dimensional peptide maps have revealed that the site of phosphorylation by the MLCK kinase of mitotic cells differs from those by these known kinases. The mitotic MLCK kinase phosphorylates MLCK at a threonine residue at a ratio of up to 1 mol of phosphate/mol of chicken gizzard MLCK. The MLCK kinase is mitosis-specific because mitotic cell extracts show much higher phosphorylation activity than nonmitotic cell extracts.  相似文献   

18.
Effects of phosphorylation of the neurofilament L protein (NF-L) on the reassembly system were studied by both sedimentation experiments and low-angle rotary shadowing. Bovine spinal cord NF-L was phosphorylated with 3-4 mol/mol protein by either the catalytic subunit of cAMP-dependent protein kinase or protein kinase C. Phosphorylated NF-L could not assemble into filaments. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C inhibited the same step of the reassembly process. Phosphorylated NF-L remained as an 8-chain complex even in favorable conditions for reassembly. The extent of the effect of phosphorylation on the filamentous structure of NF-L was also investigated by using the catalytic subunit of cAMP-dependent protein kinase. The amount of unassembled NF-L increased linearly with increased phosphorylation in the sedimentation experiments. Structural observations indicated that 1 or 2 mol of phosphorylation is enough to inhibit reassembly and to induce disassembly, and the disassembly process was also observed. The filaments were shown to unravel with disassembly. Star-like clusters, which we reported as being the initial stage of reassembly, were also identified.  相似文献   

19.
Whether or not various cytosolic protein kinases (and especially the type I cAMP-dependent protein kinase) of rat ventral prostate are specifically regulated with respect to total activity or specific activity by androgen has been investigated. Following androgen deprivation, the total activity per prostate of cAMP-dependent protein kinase (with histone as substrate) changed little at 24 h, declining by about 20% at 96 h. Under these conditions, its specific activity remained unaltered at 24 h, but was markedly enhanced at 96 h postorchiectomy. Type II cAMP-dependent protein kinase in rat ventral prostate cytosol was the only form of cAMP-dependent protein kinases present as determined by measurement of catalytic activity as well as [32P]-8-N3-cAMP binding to the regulatory subunits. There was no alteration in the distribution of the isoenzymes of cAMP-dependent protein kinases or the response of these kinase activities to cAMP owing to castration of animals. The prostatic cytosol also contains free regulatory subunit (with molecular weight similar to that of regulatory subunit R1) which coelutes with type II cAMP-dependent protein kinase. This finding was confirmed by using [32P]-8-N3-cAMP photoaffinity labeling of cAMP-binding proteins. With respect to cAMP-independent protein kinase (measured with dephosphophosvitin as substrate), a decline of 31% in its specific activity was observed in cytosol of prostates from rats castrated for a period of 24 h without significant further change at later periods following castration. However, there was a marked progressive reduction in total activity of this enzyme per prostate (loss of 72% at 96 h postorchiectomy). The increase in specific activity of cAMP-dependent, but not cAMP-independent, protein kinase in the face of decreasing total activity in the cytosol at later periods of castration (e.g., at 96 h) may reflect a slower loss of the former enzyme protein than the bulk of the cytosolic proteins. Administration of testosterone to castrated animals prevented these changes. These data do not indicate a specific regulation by steroid of the type I cAMP-dependent protein kinase in the prostate. Rather, the cAMP-independent protein kinase (with dephosphophosvitin as substrate) appears to be modulated by the androgenic status of the animal.  相似文献   

20.
In a previous report on the ontogeny of the ovarian adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity during prepubertal development of the rat, we concluded that the 4-fold decline in cAMP-dependent protein kinase activity observed in ovaries of 21- to 23-day-old rats was due to the presence of a heat-labile inhibitor in the ovarian extracts (Hunzicker-Dunn et al., 1984). We developed an assay for this ovarian kinase inhibitor activity that was based on the observation that ovarian cytosol added to an exogenous catalytic subunit of cAMP-dependent protein kinase caused a time-dependent and ovarian cytosol protein concentration-dependent inhibition of exogenous catalytic subunit phosphotransferase activity. The present studies were conducted to evaluate the basis for this catalytic subunit inhibitor present in soluble rat ovarian extracts of prepubertal-aged rats. This inhibitor activity was absent from cytosol extracts of rat corpora lutea, rat liver, rabbit follicles, and rabbit corpora lutea. Inhibitor activity present in rat ovarian cytosol was not attributable to insufficient levels of the phosphorylation substrate Kemptide. Inhibitor activity was also not related to the presence of the large amount of catalytic subunit-free regulatory subunit of the cAMP-dependent protein kinase present in ovarian extracts of late juvenile-aged rats. Inhibitor activity, however, did correlate with an endogenous adenosine triphosphatase (ATPase) activity that reduced assay ATP concentrations below levels needed to accurately measure phosphotransferase activity, despite the presence of sodium fluoride (an ATPase inhibitor) and ATP concentrations 5- to 15-fold greater than the Km of the kinase for ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号