首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Summary The fine structure of the infundibular process of the hedgehog has been studied, using material fixed in osmium tetroxide and embedded in Vestopal W. The process resembles in general structure that of other mammals, but also shows features not previously described in other species.The nerve fibres contain a number of inclusions, namely: small vesicles, 300–500 Å in diameter; larger vesicles, up to 2000 Å in diameter, which contain a variable amount of osmiophilic material; hexagonal crystal-like bodies, approximately 1250 × 3000 Å in size, lying within a striated membranous sheath; and aggregate bodies made up of small electron dense granules, possibly derived from mitochondria.In addition complex multilamellate bodies occur in some nerve fibres, which apparently give rise to membranous vesicles. Pituicytes, of varying appearance, are often intimately related to the nerve fibres.The findings suggest that synthesis of material may occur in the distal part of the fibres of the hypothalamo-hypophysial tract.We are indebted to the Medical Research Council, who provided the electron microscope in the Department of Anatomy, University of Birmingham, which was used in this study.  相似文献   

2.
Winkler  H. 《Neurochemical research》1997,22(8):921-932
The membrane proteins of adrenergic large dense core vesicles, in particular those of chromaffin granules, have been characterized in detail. With the exception of the nucleotide carrier all major peptides have been cloned. There has been a controversy whether these vesicles contain antigens like synaptophysin, synaptotagmin and VAMP or synaptobrevin found in high concentration in synaptic vesicles. One can now conclude that large dense core vesicles also contain these peptides although in lower concentrations. The biosynthesis of large dense core vesicles is analogous to that of other peptide secreting vesicles of the regulated pathway. One cannot yet definitely define the biosynthesis of small dense core vesicles which apparently have a very similar membrane composition to that of large dense core vesicles. They may form directly from large dense core vesicles when their membranes have been retrieved after exocytosis. These membranes may become sorted in an endosomal compartment where peptides may be deleted or added. Such an addition could be derived from synaptophysin-rich vesicles present in adrenergic axons. However small dense core vesicle peptides may also be transported axonally independent of large dense core vesicles. For proving one of these possibilities some crucial experiments have been suggested.  相似文献   

3.
To identify precursor cells of xanthophores (xanthoblasts), non-pigmented cells without any phenotypic traits as pigment cells were isolated from the dermal tissue of xanthic goldfish with an adult color pattern and cultured in a medium containing 1 mM db-cAMP or 0.25 U/ml ACTH and 10% carp serum. These non-pigmented cells differentiated into xanthophores which showed a dendritic morphology and contained a large quantity of fluorescent pteridines and numerous vesicular inclusions. Sepiapterin was the major component, and the vesicles contained fuzzy material in addition to small membranous elements. The fluorescent pattern and the morphological characteristics indicated that the differentiated pigment cells were xanthophores of larval type.  相似文献   

4.
1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mmicro in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.  相似文献   

5.

Background  

The presence of small membranous particles characterizes the male genital fluids of different mammalian species. The influence of semen vesicles, denominated prostasomes, on sperm functional properties has been well documented in humans, but their biological activity is scarcely known in other species. The present work investigated prostasome-like vesicles in pig semen for their ability to interact with spermatozoa and to affect acrosome reaction.  相似文献   

6.
A morphological, histological and ultrastructural study was carried out on the spermiducts and seminal vesicles of some species of Acrididae and Tettigoniidae. In all the species examined, the spermiducts and seminal vesicles have a monolayered secretory epithelium. Only the species of Acrididae have the sac with a flattened epithelium. Furthermore, in the most distal tubule region of the seminal vesicles of Eyprepocnemis plorans plorans, a rather characteristic secretory mechanism was found: the cytoplasm of the epithelial cells contained a large vesicle delimited by tightly packed microvilli. Numerous small vesicles open into this large vesicle which gradually dilates to merge with the apical plasma membrane releasing its contents into the lumen. Spermiophagic activity was found in all the species investigated. In the Tettigoniidae, this activity was found only in some epithelial cells of the seminal vesicle wall; in the species of the Acrididae the spermiophagic activity was carried out in the spermiduct lumen by an epithelial‐type cellular group. Spermiophagic activity is discussed as well as its role in the reproduction of these insects.  相似文献   

7.
THE FINE STRUCTURE OF NEURONS   总被引:6,自引:4,他引:2       下载免费PDF全文
1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.  相似文献   

8.
The fine structure of the hemocytes and nephrocytes in Argas (Persicargas) arboreus is described and compared with that of similar cells in other tick species and insects. The hemocytes are of three types: prohemocytes, with a relatively undifferentiated cytoplasm lacking granular inclusions and probably serving as progenitors of the other hemolymph cell types; plasmatocytes, containing abundant mitochondria, cisternae of rough endoplasmic reticulum (RER), and free ribosomes, as well as some small granular inclusions; granulocytes, the predominant cell type in the hemolymph, containing numerous granules of variable electron density and maturity, and pseudopodia-like processes on the cell surface. Plasmatocytes and granulocytes are phagocytic and possibly also have other functions in the tick body. Cells with intermediate features appear to be in a stage of transition from plasmatocyte to granulocyte. Nephrocytes contain vacuoles enclosing fibrillar material, some electrondense granules, and moderate amounts of the active organelles—mitochondria, RER, and ribosomes. The nephrocyte is surrounded by a basal lamina and its plasma membrane infolds to form many deep invaginations coated by a fine fibrillar material. Openings to these invaginations are closed by membranous diaphragms. Coated tubular elements connect the surface invaginations with large coated vesicles, which appear to be specialized for internalization of proteins from the hemolymph. The dense granules may represent an advanced stage of condensation of ingested protein and thus may be lysosomal residual bodies, or they may develop by accumulation of secretory products.  相似文献   

9.
Summary At the base of the optic tentacular ganglion there is a group of large monopolar cells containing numerous secretory inclusions. These are the collar cells. Secretory material can be seen accumulating in swollen portions of the granular endoplasmic reticulum. It is postulated that this material is transported to the Golgi bodies and thus the limiting membrane of the inclusions is derived from the Golgi membranes. The Golgi bodies appear to be polarized and small vesicles resembling secretory inclusions are associated with one face of these organelles. The secretory inclusions fuse together to form large membrane-bound secretory pools in the perikaryon. The collar-cell processes are packed with secretory inclusions. These processes traverse the digital extensions of the tentacular ganglion and pass into the epithelium covering the tip of the tentacle. The secretory inclusions do not resemble neurosecretory inclusions in other situations. The collar cell processes receive a nerve supply from single axons containing granular and agranular vesicles. The evidence that these cells may be modified neurons is only minimal.This work was supported by the Australian Research Grants Committee.  相似文献   

10.
Abstract: Multiple biologically active peptides arising from a common prohormone are sorted into distinct classes of dense core vesicles within the bag cell neurons of Aplysia californica . In this study, pulse-chase analysis, combined with subcellular fractionation on Percoll gradients, are used to define the location of the prohormone processing events within the secretory pathway. Initial cleavage of the prohormone occurs in a light cellular compartment associated with the Golgi apparatus. The amino-terminal processing intermediate then accumulates in a denser compartment containing small dense cores enclosed in membranous sacs, as well as larger immature vesicles. After 4 h, amino-terminai products are found primarily in a much denser compartment which consists of large and small dense core vesicles. These large and small vesicles can be separated from each other using Percoll gradient centrifugation and are found to be enriched in amino- and carboxy-terminal products, respectively. Lastly, membrane association experiments suggest differential binding to membranes, or integral membrane proteins, as a possible mechanism for sorting of amino- and carboxy-terminal products.  相似文献   

11.
Espinha LM  Gaspar JO 《Cytobios》1999,100(394):119-126
Electron microscopy and immunolabelling with antiserum specific to cucumber mosaic virus coat protein were used to examine tobacco leaf cells infected by cucumber mosaic virus isolated from Catharanthus roseus (CMV-Cr). Crystalline and amorphous inclusions in the vacuoles were the most obvious cytological modifications seen. Immunogold labelling indicated that the crystalline inclusion was made up of virus particles and amorphous inclusions contained coat protein. Rows of CMV-Cr particles were found between membranes of dictyosomes, but membranous bodies and tonoplast-associated vesicles were not evident. Virus particles and/or free coat protein were easily detected in the cytoplasm by immunolabelling. No gold labelling was found within nuclei, chloroplasts and mitochondria.  相似文献   

12.
The structure of the kidney of the Swiss albino mouse changes progressively during the first 2 weeks after birth. Cells proliferate to form new nephrons, cells differentiate by acquiring specialized membranous components, and certain cytological features which are present at birth diminish in abundance or disappear. The differentiation of the cells of the cortical tubules has been studied using the light and electron microscopes. The tubules are partially and variably differentiated at birth. During the first 2 weeks after birth the brush border develops in the proximal tubules by the accumulation of numerous microvilli on the apical cell margins. Basal striations develop in proximal and distal tubules as an alignment of mitochondria, the result of what appears to be progressive interlocking of adjacent fluted cells. The mitochondria increase in number and size, accumulate homogeneous matrix, and acquire small, very dense granules. The collecting ducts develop tight pleating of the basal cell membranes, and dark cells containing numerous small cytoplasmic vesicles and microvilli appear. At birth there are dense irregular cytoplasmic inclusions presumed to be lipide in renal cells, the cytoplasmic granules of Palade are abundant, and there are large round bodies in the cells of the proximal tubules. The lipide inclusions disappear a few days after birth, and the cytoplasmic granules of Palade diminish in abundance as the cells differentiate. The large round bodies in the proximal tubules consist of an amorphous material and contain concentrically lamellar structures and mitochondria. They resemble the cytoplasmic droplets produced in the proximal tubules of adult rats and mice by the administration of proteins. The large round bodies disappear from the proximal tubules of infant mice during the first week after birth, but the concentric lamellar structures may be found in adult mice.  相似文献   

13.
The structure of the kidney of the Swiss albino mouse changes progressively during the first 2 weeks after birth. Cells proliferate to form new nephrons, cells differentiate by acquiring specialized membranous components, and certain cytological features which are present at birth diminish in abundance or disappear. The differentiation of the cells of the cortical tubules has been studied using the light and electron microscopes. The tubules are partially and variably differentiated at birth. During the first 2 weeks after birth the brush border develops in the proximal tubules by the accumulation of numerous microvilli on the apical cell margins. Basal striations develop in proximal and distal tubules as an alignment of mitochondria, the result of what appears to be progressive interlocking of adjacent fluted cells. The mitochondria increase in number and size, accumulate homogeneous matrix, and acquire small, very dense granules. The collecting ducts develop tight pleating of the basal cell membranes, and dark cells containing numerous small cytoplasmic vesicles and microvilli appear. At birth there are dense irregular cytoplasmic inclusions presumed to be lipide in renal cells, the cytoplasmic granules of Palade are abundant, and there are large round bodies in the cells of the proximal tubules. The lipide inclusions disappear a few days after birth, and the cytoplasmic granules of Palade diminish in abundance as the cells differentiate. The large round bodies in the proximal tubules consist of an amorphous material and contain concentrically lamellar structures and mitochondria. They resemble the cytoplasmic droplets produced in the proximal tubules of adult rats and mice by the administration of proteins. The large round bodies disappear from the proximal tubules of infant mice during the first week after birth, but the concentric lamellar structures may be found in adult mice.  相似文献   

14.
Lepas anatifera L. is a common pedunculated marine barnacle with well developed, articulated cirri which gather water-suspended food particles, aid in predatory food capturing and may facilitate respiratory function by creating water currents through the mantle. The present data are the first ultrastructural findings of the neuromuscular apparatus which supports rhythmic cirral contraction. A single large striated flexor muscle extending the length of the cirus contains mostly one type of myofibril (Type A) but is accompanied by a small band of more compact myofibrils (Type B). A well developed T-tubular system with extensive sarcoplasmic cisternae and dyads is found, in addition to subsarcolemmal membranous whorls. A central neural complex innervates this muscle and electron-lucent axons containing large membranous elements and small vesicles and surrounded by supporting cells with extensive rough endoplasmic reticula are present. Intimate association of nerve processes with the flexor muscle consists of neuromuscular junctions with synaptic-type vesicles, and a well developed mode of sarcolemmal vesicular transport. These focally compacted vesicles communicate directly with the muscle tubular system. Rhythmic movement of cirri is probably controlled by alternating contraction of the flexor muscle followed by relaxation with pulsatile filling of the afferent hemocoel with blood.  相似文献   

15.
An accumulation of ceramide associated with the deficiency of acid ceramidase has been demonstrated in cultured diploid skin fibroblasts from a patient with Farber's disease. We extend this observation to investigate the lysosomal localization of accumulated ceramide and the abnormalities of lysosomes caused by this ceramide accumulation in Farber's diseased fibroblasts. We have found that the lysosomal fraction isolated from Farber's diseased fibroblasts by a subcellular fractionation procedure is markedly low in density compared with that of normal fibroblasts and is separated from other subcellular organellers. Ultrastructural studies of the isolated lysosomal fraction from Farber's diseased fibroblasts showed in mixed population of intact and swollen vesicles with a lysosomal appearance. Examination under high magnification clearly demonstrated lysosomal inclusions which contain lamellar and curvilinear membranes and resembled those seen in the intact fibroblasts. Subcellular localization of Farber's fibroblasts showed that the accumulated [3H]ceramide from the culture medium was predominantly localized in the lysosomal fraction with a markedly low density and very little was found to be associated with other cellular membranes. Our finding that ceramide is accumulated in the lysosomal fraction of Farber's fibroblasts and that these cells also show membranous inclusions strongly suggests that the accumulation of ceramide is directly involved in the formation of lysosomal inclusions.  相似文献   

16.
By immunogold labelling the location of Festuca leaf streak virus glycoprotein (FLSV-G) was investigated in developing phloem and mature leaf parenchyma of Festuca gigantea infected with Festuca leaf streak virus (FLSV: Rhabdotiridae). In developing phloem cells, FLSV-G was detected in endoplasmic reticulum (ER). at perinuclear membranes, and in assembled virions, but neither in Golgi stacks and Golgi vesicles nor at the plasma membrane of infected cells. These results indicate that FLSV-G stays in the ER after transmembrane synthesis, and is not routed through the secretory pathway in F. gigantea. The membranous inclusions, present in infected mature leaf parenchyma cells were found to contain FLSV-G. It is suggested that the, virus-induced membranous inclusions have developed from FLSV-G-containing ER. The residence of FLSV-G in ER (present study) is in contrast to results with vesicular stomatitis virus (VSV; vertebrate rhabdovirus). Here the G protein is known to be routed to the plasma membrane through the secretory pathway.  相似文献   

17.
Three types of degenerating peptidergic neurosecretory fibres have been found in the posterior pituitary of chronically dehydrated albino rats. "Dark" neurosecretory fibres and their swellings contain neurosecretory granules, neurotubules, shrunken mitochondria and diffusely distributed fine dense material. Some swellings are filled with synaptic vesicles and/or conglomerations of dense membranes. The transitional forms exist between these fibres and extracellular accumulations of electron dense material. Synaptic vesicles, single neurosecretory granules, lipid-like droplets and lamellar bodies occur in the latter. Some neurosecretory fibres and swellings have numerous polymorphous inclusions arising due to degradation of secretory inclusions and organelles, mitochondria and neurotubules in particular. "Dark" neurosecretory elements and those with numerous polymorphous inclusions are enveloped by pituicyte cytoplasm. Sometimes the plasma membranes both of the pituicytes and neurosecretory fibres are destroyed or transformed into a multi-membrane complex. It is assumed that pituicytes may phagocytize degenerating neurosecretory elements. N urosecretory fibres with a locally dissolved neuroplasm and/or large lucent vacuoles seem to be due to axonal degeneration by the "light" type. These neurosecretory elements, the largest of them in particular, may transform into large cavities bordered by a membrane and containing flake-like material and single-membrane vacuoles. Degeneration of neurosecretory elements seems to occur mainly due to hyperfunction of the hypothalamo-hypophysial neurosecretory system.  相似文献   

18.
The comparable ultrastructural analysis of the sarcocyst surface apparatus (SSA) was made for four species of Sarcocystis: Sarcocystis muris, S. fusiformis, S. medusiformis, and Sarcocystis sp. from buffalo heart muscles. In all these species, SSA contains a surface membrane, overmembrane complex with glycocalyx, and submembrane complex made of two glycoprotein SSA primembrane layers. SSA makes numerous primary vesicle-like protrusions and pits in between. Some vesicles containing two layers, PM1 and PM2, are pinching off from the totally formed protrusions. Then these vesicles are directed into infected host cell to participate in its degradation. In the SSA pits neither over-, nor submembrane complex is present, the pits being made of the surface membrane only. It is important that fibrillar structures penetrate through the SSA membrane into pits from the host cell. Besides, SSA forms secondary protrusions with different structures in various species of Sarcocystis. They increase the sarcocyst surface and transport different substances along intermediate filaments from the SSA pits membrane to the sarcocyst body. At the same time, deep invaginations are found in the SSA of old sarcocysts. We thought that these structures increased the sarcocyst surface and thus promote to intensify metabolism. This study-defined presence of membranous vesicles in secondary protrusions. According to their structure and localization, the membranous vesicles may be involved in the building of the sarcocyst surface membrane.  相似文献   

19.
Summary The ultrastructure of intranuclear rodlets, microtubules, fibrillar lattices and membranous inclusions found in the developing cuneate nuclei of rats is described. Rodlets, ranging in diameter from 96–312 nm and in length from 1–2 m, are made up of tightly packed straight filaments measuring 5–8 nm in diameter. Microtubules with a diameter of 26 nm are clustered together. Fibrillar lattices are made up of fibrils with a diameter of 9 nm arranged in layers or sets. Two to nine sets make up a lattice, with a maximum width of 68 nm, in which the adjacent sets are arranged at an angle to each other. Rodlets and fibrillar lattices occur in 6.8% of the neurons. Membranous inclusions, reported here for the first time in normal neurons, are of 2 types: small vesicles of 0.1–0.6 m and large vacuoles measuring 1–2 m. Both types are bounded by either a single or a double membrane and generally have an electron lucent content. Membranous inclusions occur in 25.3 % of the neurons. Changes in the frequency of occurrence of the various intranuclear inclusions in the course of postnatal development are also reported.  相似文献   

20.
In addition to sperm cells, seminal fluid contains various small membranous vesicles. These include prostasomes, membrane vesicles secreted by prostate epithelial cells. Prostasomes have been proposed to perform a variety of functions, including modulation of (immune) cell activity within the female reproductive tract and stimulation of sperm motility and capacitation. How prostasomes mediate such diverse functions, however, remains unclear. In many studies, vesicles from the seminal plasma have been categorized collectively as a single population of prostasomes; in fact, they more likely represent a heterogeneous mixture of vesicles produced by different reproductive glands and secretory mechanisms. We here characterized membranous vesicles from seminal fluid obtained from vasectomized men, thereby excluding material from the testes or epididymides. Two distinct populations of vesicles with characteristic sizes (56 ± 13 nm vs. 105 ± 25 nm) but similar equilibrium buoyant density (~1.15 g/ml) could be separated by using the distinct rates with which they floated into sucrose gradients. Both types of vesicle resembled exosomes in terms of their buoyant density, size, and the presence of the ubiquitous exosome marker CD9. The protein GLIPR2 was found to be specifically enriched in the lumen of the smaller vesicles, while annexin A1 was uniquely associated with the surface of the larger vesicles. Prostate stem-cell antigen (PSCA), a prostate-specific protein, was present on both populations, thereby confirming their origin. PSCA was, however, absent from membrane vesicles in the seminal fluid of some donors, indicating heterogeneity of prostasome characteristics between individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号