共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling
Graded Hedgehog (Hh) signaling patterns the spinal cord dorsoventral axis by inducing and positioning distinct precursor domains, each of which gives rise to a different type of neuron. These domains also generate glial cells, but the full range of cell types that any one precursor population produces and the mechanisms that diversify cell fate are unknown. By fate mapping and clonal analysis in zebrafish, we show that individual ventral precursor cells that express olig2 can form motoneurons, interneurons and oligodendrocytes. However, olig2+ precursors are not developmentally equivalent, but instead produce subsets of progeny cells in a spatially and temporally biased manner. Using genetic and pharmacological manipulations, we provide evidence that these biases emerge from Hh acting over time to set, maintain, subdivide and enlarge the olig2+ precursor domain and subsequently specify oligodendrocyte development. Our studies show that spatial and temporal differences in Hh signaling within a common population of neural precursors can contribute to cell fate diversification. 相似文献
2.
3.
Intracellular pH was measured with the pH-sensitive fluorescent probe BCECF in spinal cord neurones cultured from rat embryos. At an external pH of 7.3, the average steady-state pHi was 7.18 +/- 0.03 (SEM, n = 97) and 7.02 +/- 0.01 (n = 221) in HEPES-buffered and in bicarbonate-buffered medium, respectively. In both external media, pHi was strongly dependent on external pH (pHe). In HEPES-buffered medium, pHi recovery following an acid load induced by transient application of ammonium required external Na+ and was inhibited by amiloride, indicating the presence of a Na+/H+ exchange. Na(+)- and HCO3(-)-dependent, DIDS-sensitive alkalinizing mechanisms also contributed to pHi regulation in CO2/bicarbonate-buffered medium. The presence of an electrogenic Na(+)-HCO3- cotransporter was confirmed by the alkalinizing effect of KCl application. The fact that pHi is lower in CO2/bicarbonate- than in HEPES-buffered medium and the alkalinization observed upon suppression of external Cl- suggest that the acidifying Cl-/HCO3- transporter plays an important role in defining pHi. 相似文献
4.
SummaryWe have isolated and characterized a cDNA from the marine sponge Geodia cydonlum coding for a new member of the tyrosine protein kinase (TK) family. The cDNA encodes a protein of Mr = 68 710, termed GCTK, which is homologous to class II receptor tyrosine kinases (RTKs). GCTK contains conserved amino acids (aa) characteristic of all protein kinases, and the sequences DLATRN and PIRWMATE which are highly specific for TKs. Furthermore, the sequence N-L-Y-x(3)-Y-Y-R Is highly homologous to the sequence D-[LIV]-Y-x(3)-Y-Y-R found only in class II RTKs. The sponge TK, when compared with mammalian class II RTKs, shows maximum 31% homology in the TK domain indicating that this the oldest member of class II RTK started to diverge from the common ancestral protein kinase 650 million years ago. Using GCTK as a probe we identified three mRNA signals ranging from 2μ6 to 0μ6 kb. Kinase activity was localized only in the cell membranes from G. cydonium (Mr = 65 000), and was not detected in the cytosol of this organism. Antibodies raised against a synthetic peptide, corresponding to the aa residues within the catalytic domain of the sponge TK, recognized strongly two proteins of Mr = 65 000; these proteins, present in membrane fractions, also bound to the anti-phosphotyrosine antibody. These data suggest that the TK cloned from the sponge is a membrane-associated 65 kDa protein. Moreover these results demonstrate that RTKs are present from the lowest group of multicellular eukaryotes, sponges, to mammals, and may suggest that RTKs are involved in a signal transduction pathway. 相似文献
5.
The protein kinase mTOR (mammalian target of rapamycin) is a critical regulator of cellular metabolism, growth, and proliferation. These processes contribute to tumor formation, and many cancers are characterized by aberrant activation of mTOR. Although activating mutations in mTOR itself have not been identified, deregulation of upstream components that regulate mTOR are prevalent in cancer. The prototypic mechanism of mTOR regulation in cells is through activation of the PI3K/Akt pathway, but mTOR receives input from multiple signaling pathways. This review will discuss Akt-dependent and -independent mechanisms of mTOR regulation in response to mitogenic signals, as well as its regulation in response to energy and nutrient-sensing pathways. Preclinical and clinical studies have demonstrated that tumors bearing genetic alterations that activate mTOR are sensitive to pharmacologic inhibition of mTOR. Elucidation of novel pathways that regulate mTOR may help identify predictive factors for sensitivity to mTOR inhibitors, and could provide new therapeutic targets for inhibiting the mTOR pathway in cancer. This review will also highlight pharmacologic approaches that inhibit mTOR via activation of the AMP-activated protein kinase (AMPK), an important inhibitor of the mTOR pathway and an emerging target in cancer. 相似文献
6.
P S Stein 《Acta biologica Hungarica》1988,39(2-3):155-160
We reveal the intrinsic motor capacity of the spinal cord by examining motor behaviours produced by spinal segments caudal to a complete transection of the spinal cord. The turtle spinal cord generates three forms of the scratch reflex in the absence of neural inputs from supraspinal structures. Each form exhibits a characteristic motor neuron discharge pattern. We test the ability of the spinal cord to generate organized motor patterns in the absence of movement-related sensory feedback by examining motor neuron discharge patterns in spinal preparations that are immobilized with a neuromuscular blocking agent. The motor neuron discharge pattern associate with each form is observed in the spinal immobilized preparation. Each of these motor patterns is therefore generated centrally within the spinal cord. 相似文献
7.
8.
Evidence for a cell-specific action of Reelin in the spinal cord 总被引:1,自引:0,他引:1
Reelin, the extracellular matrix protein missing in reeler mice, plays an important role in neuronal migration in the central nervous system. We examined the migratory pathways of phenotypically identified spinal cord neurons to determine whether their positions were altered in reeler mutants. Interneurons and projection neurons containing choline acetyltransferase and/or NADPH diaphorase were studied in E12.5-E17.5 reeler and wild-type embryos, and their final locations were assessed postnatally. While three groups of dorsal horn interneurons migrated and differentiated normally in reeler mice, the migrations of both sympathetic (SPNs) and parasympathetic preganglionic neurons (PPNs) were aberrant in the mutants. Initially reeler and wild-type SPNs were detected laterally near somatic motor neurons, but by E13.5, many reeler SPNs had mismigrated medially. Postnatally, 79% of wild-type SPNs were found laterally, whereas in reeler, 92% of these neurons were positioned medially. At E13.5, both reeler and wild-type PPNs were found laterally, but by E14.5, reeler PPNs were scattered across the intermediate spinal cord while wild-type neurons correctly maintained their lateral location. By postnatal day 16, 97% of PPNs were positioned laterally in wild-type mice; in contrast, only 62% of PPNs were found laterally in mutant mice. In E12.5-E14.5 wild-type mice, Reelin-secreting cells were localized along the dorsal and medial borders of both groups of preganglionic neurons, but did not form a solid barrier. In contrast, Dab1, the intracellular adaptor protein thought to function in Reelin signaling, was expressed in cells having positions consistent with their identification as SPNs and PPNs. In combination, these findings suggest that, in the absence of Reelin, both groups of autonomic motor neurons migrate medially past their normal locations, while somatic motor neurons and cholinergic interneurons in thoracic and sacral segments are positioned normally. These results suggest that Reelin acts in a cell-specific manner on the migration of cholinergic spinal cord neurons. 相似文献
9.
Developmental regulation of PSD-95 and nNOS expression in lumbar spinal cord of rats 总被引:1,自引:0,他引:1
Gao S Cheng C Zhao J Chen M Li X Shi S Niu S Qin J Lu M Shen A 《Neurochemistry international》2008,52(3):495-501
Postsynaptic density (PSD)-95 is originally isolated from glutamatergic synapse where it serves as a physical tether to allow neuronal nitric oxide synthase (nNOS) signaling by N-methyl-D-aspartate receptor (NMDAR) activity. Considering the physiological importance of glutamate receptor and nitric oxide (NO) during development, we examined the spatiotemporal expression of PSD-95 and nNOS in the lumbar spinal cord at a postnatal stage. Temporally, both gene and protein levels of them gradually increased with age after birth, peaked at the postnatal day 14 (P14), and then decreased to an adult level. In addition, the enhanced coimmunoprecipitations between PSD-95 and nNOS were detected in developing spinal cord. Spatially, PSD-95 staining codistributed with nNOS in NeuN-positive motor neurons and sensory neurons at P14. These findings indicate that PSD-95 and nNOS might collectively participate in spinal cord development. 相似文献
10.
11.
12.
Agrin secreted by motor neurons is a critical signal for postsynaptic differentiation at the developing neuromuscular junction. We used cultures of chick ventral spinal cord neurons with rat myotubes and immunofluorescence with species-specific antibodies to determine the distribution of agrin secreted by neurons and compare it to the distribution of agrin secreted by myotubes. In addition, we determined the distribution of agrin secreted by isolated chick ventral spinal cord neurons and rat motor neurons grown on a substrate that binds agrin. In cocultures, neuronal agrin was concentrated along axons at sites of axon-induced acetylcholine receptor (AChR) aggregation and was found at every such synaptic site, consistent with its role in synaptogenesis. Smaller amounts of agrin were found on dendrites and cell bodies and rarely were associated with AChR aggregation. Muscle agrin, recognized by an antibody against rat agrin, was found at nonsynaptic sites of AChR aggregation but was not detected at synaptic sites, in contrast to neuronal agrin. In cultures of isolated chick neurons or rat motor neurons, agrin was deposited relatively uniformly around axons and dendrites during the first 2-3 days in culture. In older cultures, agrin immunoreactivity was markedly more intense around axons than dendrites, indicating that motor neurons possess an intrinsic, developmentally regulated program to target agrin secretion to axons. 相似文献
13.
14.
Shapiro MJ Nguyen CT Aghajanian H Zhang W Shapiro VS 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(10):7055-7061
The activation of T cells and the initiation of an immune response is tightly controlled through the crosstalk of both positive and negative regulators. Two adaptors that function as negative regulators of T cell activation are adaptor in lymphocytes of unknown function X (ALX) and linker for activation of X cell (LAX). Previously, we showed that T cells from mice deficient in ALX and LAX display similar hyperresponsiveness, with increased IL-2 production and proliferation upon TCR/CD28 stimulation, and that these adaptors physically associate. In this study, we analyze the nature of the association between ALX and LAX. We demonstrate that this association occurs in the absence of TCR/CD28 signaling via a mechanism independent of both tyrosine phosphorylation of LAX and the SH2 domain of ALX. Cotransfection of ALX with LAX resulted in LAX tyrosine phosphorylation in the absence of TCR/CD28 stimulation. ALX-mediated LAX phosphorylation depends upon the ALX SH2 domain, which functions to recruit Lck to LAX. We also show that LAX, like ALX, can inhibit RE/AP reporter activation. However, in contrast to its inhibition of NFAT, the inhibition of RE/AP by LAX is independent of its tyrosine phosphorylation. Therefore, it can be concluded that inhibition of signaling events involved in T cell activation by LAX occurs through mechanisms both dependent on and independent of its tyrosine phosphorylation. 相似文献
15.
16.
17.
Campbell SJ Wilcockson DC Butchart AG Perry VH Anthony DC 《Journal of neurochemistry》2002,83(2):432-441
The pattern of neutrophil recruitment that accompanies inflammation in the CNS depends on the site of injury and the stage of development. The adult brain parenchyma is refractory to neutrophil recruitment and associated damage as compared to the spinal cord or juvenile brain. Using quantitative Taqman RT-PCR and enzyme-liked immunosorbent assay (ELISA), we compared mRNA and protein expression of the rat neutrophil chemoattractant chemokines (CINC) in spinal cord and brain of adult and juvenile rats to identify possible association with the observed differences in neutrophil recruitment. Interleukin-1beta (IL-1beta) injection resulted in up-regulated chemokine expression in both brain and spinal cord. CINC-3 mRNA was elevated above CINC-1 and CINC-2alpha, with expression levels for each higher in spinal cord than in brain. By ELISA, IL-1beta induced greater CINC-1 and CINC-2alpha expression compared to CINC-3, with higher protein levels in spinal cord than in brain. In the juvenile brain, significantly higher levels of CINC-2alpha protein were observed in response to IL-1beta injection than in the adult brain following an equivalent challenge. Correspondingly, neutrophil recruitment was observed in the juvenile brain and adult spinal cord, but not in the adult brain. No expression of CINC-2beta mRNA was detected. Thus differential chemokine induction may contribute to variations in neutrophil recruitment in during development and between the different CNS compartments. 相似文献
18.
19.
Alejandro F. De Nicola Monica Ferrini Susana L. Gonzalez Maria Claudia Gonzalez Deniselle Claudia A. Grillo Gerardo Piroli Flavia Saravia E. Ronald de Kloet 《The Journal of steroid biochemistry and molecular biology》1998,65(1-6):253-272
Glucocorticoids (GC) and mineralocorticoids (MC) have profound regulatory effects upon the central nervous system (CNS). Hormonal regulation affects several molecules essential to CNS function. First, evidences are presented that mRNA expression of the 3 and β1-subunits of the Na,K-ATPase are increased by GC and physiological doses of MC in a region-dependent manner. Instead, high MC doses reduce the β1 isoform and enzyme activity in amygdaloid and hypothalamic nuclei, an effect which may be related to MC control of salt appetite. The 3-subunit mRNA of the Na,K-ATPase is also stimulated by GC in motoneurons of the injured spinal cord, suggesting a role for the enzyme in GC neuroprotection. Second, we provide evidences for hormonal effects on the expression of mRNA for the neuropeptide arginine vasopressin (AVP). Our data show that GC inhibition of AVP mRNA levels in the paraventricular nucleus is sex-hormone dependent. This sexual dimorphism may explain sex differences in the hypothalamic–pituitary–adrenal axis function between female and male rats. Third, steroid effects on the astrocyte marker glial fibrillary acidic protein (GFAP) points to a complex regulatory mechanism. In an animal model of neurodegeneration (the Wobbler mouse) showing pronounced astrogliosis of the spinal cord, in vivo GC treatment down-regulated GFAP immunoreactivity, whereas the membrane-active steroid antioxidant U-74389F up-regulated this protein. It is likely that variations in GFAP protein expression affect spinal cord neurodegeneration in Wobbler mice. Fourth, an interaction between neurotrophins and GC is shown in the injured rat spinal cord. In this model, intensive GC treatment increases immunoreactive low affinity nerve growth factor (NGF) receptor in motoneuron processes. Because GC also increases immunoreactive NGF, this mechanism would support trophism and regeneration in damaged tissues. In conclusion, evidences show that some molecules regulated by adrenal steroids in neurons and glial cells are not only involved in physiological control, but additionally, may play important roles in neuropathology. 相似文献
20.
Soula C Danesin C Kan P Grob M Poncet C Cochard P 《Development (Cambridge, England)》2001,128(8):1369-1379
In the vertebrate spinal cord, oligodendrocytes arise from the ventral part of the neuroepithelium, a region also known to generate somatic motoneurons. The emergence of oligodendrocytes, like that of motoneurons, depends on an inductive signal mediated by Sonic hedgehog. We have defined the precise timing of oligodendrocyte progenitor specification in the cervico-brachial spinal cord of the chick embryo. We show that ventral neuroepithelial explants, isolated at various development stages, are unable to generate oligodendrocytes in culture until E5 but become able to do so in an autonomous way from E5.5. This indicates that the induction of oligodendrocyte precursors is a late event that occurs between E5 and E5.5, precisely at the time when the ventral neuroepithelium stops producing somatic motoneurons. Analysis of the spatial restriction of oligodendrocyte progenitors, evidenced by their expression of O4 or PDGFR(&agr;), indicate that they always lie within the most ventral Nkx2.2-expressing domain of the neuroepithelium, and not in the adjacent domain characterized by Pax6 expression from which somatic motoneurons emerge. We then confirm that Shh is necessary between E5 and E5.5 to specify oligodendrocyte precursors but is no longer required beyond this stage to maintain ongoing oligodendrocyte production. Furthermore, Shh is sufficient to induce oligodendrocyte formation from ventral neuroepithelial explants dissected at E5. Newly induced oligodendrocytes expressed Nkx2.2 but not Pax6, correlating with the in vivo observation. Altogether, our results show that, in the chick spinal cord, oligodendrocytes originate from Nkx2.2-expressing progenitors. 相似文献