首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of nutrient conditions on biochemical components (sugars and amino acids) of phytoplankton were examined in Lake Nakanuma in Japan. Phosphate, ammonium and silicate were added to water samples collected at 0 m, which were incubated for 15 days in situ. Chlorophyll a in phosphate-added samples increased much more than that in other samples. Total amino acids and total neutral sugars in phosphate-added samples also increased more than those in other samples. The increase of total amino acids and chlorophyll began faster than that of total neutral sugars during the first 5 days of incubation. Total neutral sugars in the phosphate-added samples increased rapidly after 8 days. The composition of amino acids did not change so much. However, the composition of neutral sugars changed according to the different nutrient addition. Phosphate-added samples changed greatly during the incubation. These changes were explained at least partly by changes in nutrient conditions. Addition of limiting nutrients decreased glucose content, whereas depletion of nutrients increased the content. This study indicates that measurements of the biochemical components contribute to the analysis of effects of nutrients on phytoplankton in natural waters.  相似文献   

2.
Lake St. Clair phytoplankton and zooplankton abundance and composition was analyzed during the period of May to September 1984. In addition, size-fractionated primary productivity and other limnological parameters were measured. Highest phytoplankton biomass was observed during spring (May) with high values for the southern and southeastern regions of the lake. Seasonally, the mean phytoplankton biomass ranged between 0.17 and 1.18 g m-3 with high values recorded during spring (May, June) compared to summer. In the spring the phytoplankton was dominated by Diatomeae followed by Chrysophyceae and Cryptophyceae. During the summer the diatoms showed a decreasing trend due to the relative prevalence of Chrysophyceae, Cryptophyceae, and Chlorophyta. The species composition was oligotrophic-mesotrophic with mixed occurrence of some eutrophic species. The phytoplankton size composition indicated dominance of microplankton/netplankton (> 20 µm) and ultraplankton (< 20 µm) during spring and summer respectively. On an overall basis ultraplankton contributed overwhelmingly to primary productivity, as much as 75 percent in the summer.The mean zooplankton biomass ranged from 173.0 to 1306.0 mg l- dominated by Cladocerans (bosminids) in contrast to the other Great Lakes. Statistical evaluation of the phytoplankton — nutrient-contaminant interactions revealed positive correlations with heavy metals, suggestive of a physiological adaptation to contamination from the chemical valley. Based on low biomass, high Production/Biomass ratio, dominance of ultraplankton, characteristic species composition and plankton spectra, the lake appears to be an oligotrophic-mesotrophic perturbed ecosystem.  相似文献   

3.
Observations on phytoplankton and environmental factors weremade across the Kuroshio front. Phytoplankton standing stockwas high just north of the temperature front, and the widthof the peak abundance was <10 km. By analyses of speciescomposition and water masses, the entrainment of coastal waterand/or the Oyashio water was considered to be an important factorfor the formation of the phytoplankton peak abundance. The comparativelyhigh contribution of the microplankton fraction >10 µmin the peak abundance also supported the importance of entrainmentprocess. The incubation experiments of natural phytoplanktonassemblages with nutrient addition showed that the microplanktonfraction has higher growth potential at the front than in theneighboring waters. Dome-like risings of isopleths of temperatureand nutrients were demonstrated in the cross sectional observationof the front Possible upwelling accompanied with nutrient supplyseemed to contribute to the retention of the phvtoptankton peakabundance at the front.  相似文献   

4.
Photosynthetic production of organic matter, and its exoenzymaticdecomposition were studied in the euphotic zone of a naturallyeutrophic lake during early spring phytoplankton bloom, andafter its breakdown. Phytoplankton were the major biomass producerswhen algae were actively growing, and the algal fraction (>3.0µm) contributed on average 75–80% to the total biomassof microplankton. When the phytoplankton bloom began to declinebacterial biomass increased rapidly and, at the end of the bloom,bacteria contributed 48.7–69.98% to the total biomassof microplankton. The high bacterial abundance during phytoplanktonbloom breakdown followed the highest rates of glucose uptake,and the highest rates of alkaline phosphatase, leucine-amino-peptidase,ß-galactosidase and ß-glucosidase activities.The majority of enzyme activity was associated with the bacterialsize fraction of seston. The activities of free (dissolved inwater) exoenzymes were negligible. The synthesis of bacterialexoenzymes was under control of an induction/derepression mechanism,and depended on the amount of easily assimilable substrates,and/or the presence of polymeric organic compounds in the water,which served as substrates for exoenzymatic hydrolysis. Thetight metabolic coupling between bacterial exoenzymatic hydrolysisand uptake of low molecular weight substrates, and its ecologicalsignificance is discussed.  相似文献   

5.
The seasonal dynamics of size-fractionated phytoplankton biomassin a coral reef area were investigated off Sesoko Island, Okinawa,Japan. Chlorophyll (Chl) a and nutrient concentrations werelow almost all year round, showing no clear seasonal variabilitywith values similar to those in some other coral reef areas.Picoplankton dominated the phytoplankton community; averagecontributions of pico-, nano- and microplankton to the totalChl a biomass were 52, 34 and 11%, respectively. However, in1998, when the seawater temperature was extremely high and coralbleaching occurred due to the ENSO event, low Chl a coupledwith high nutrient concentrations were observed. This was associatedwith a decrease in the picoplankton size fraction. We suggestthat the high seawater temperature in 1998 decreased the growthrate of the picoplankton; however, the micro- and nanoplanktonmay also be limited by other factors such as low nutrient concentrations.  相似文献   

6.
秦皇岛海域微微型藻华期间叶绿素a分级研究   总被引:2,自引:0,他引:2  
2011年6月秦皇岛北戴河海域暴发微微型浮游植物赤潮,对北戴河海域进行了3次海域调查,探讨和分析了秦皇岛海域赤潮暴发期间的6月和非赤潮期间的7、8月表层浮游植物的粒级结构分布特征,并对环境因子进行了相关影响分析.赤潮期间整个调查海域范围内叶绿素a(Chl.a)平均含量为10.85±5.13μg/L,非赤潮期间7月、8月Chl.a的平均含量为5.50±3.60μg/L.赤潮期间和非赤潮期间各粒级浮游植物Chl.a含量对Chl.a总量的贡献率有所差异,赤潮期间6月小型(Microphytoplankton,>20μm)、微型(Nanophytoplankton,2~20μm)和微微型(Picophytoplankton,0.74~2μm)浮游植物对总Chl.a的贡献率分别为2.1%、48.3%和49.6%.非赤潮期间7月小型、微型、微微型对总Chl.a的贡献率分别为14.4%、51.6%、24.0%.通过浮游植物粒径分级Chl.a和环境因子的相关性分析,发现在赤潮期间调查海域浮游植物Chl.a与硝酸盐的相关性系数随着浮游植物粒径的增大而从负逐渐变正.发现在非赤潮区微型和微微型浮游植物与OD显著正相关(p<0.01).  相似文献   

7.
In order to yield some insights into the planktonic food web structure of new reservoirs, size‐fractionated biomass and productivity of phytoplankton were examined from 1996 to 1997 (following the 1995 flooding of the Sep Reservoir, Puy‐de‐Dôme, France), in relation to nutrients (P, N) and metazooplankton (Rotifers, Cladocera, Copepods). Autotrophic nanoplankton (ANP, size class 3–45 μm) dominated the phytoplankton biomass (as Chlorophyll a) and production, while autotrophic picoplankton (APP, 0.7–3 μm) exhibited the lowest and relatively constant biomass and production. Cells of the autotrophic microplankton (AMP, >45 μm) were considered inedible for planktonic herbivores. The production‐biomass diagram for the different size classes and the positive correlation between APP production and ANP + AMP production suggested that grazing was potentially more important than nutrients in shaping the phytoplankton size structure. Metazooplankton biomass was low compared to other newly flooded reservoirs or to natural lakes with phytoplankton biomass similar to that of the Sep Reservoir. This resulted in low ratios (metazooplankton to edible phytoplankton) both in terms of production (average 0.43% in 1996 and 0.76% in 1997) and biomass, suggesting that only a small fraction of phytoplankton was directly consumed by metazooplankton. We suggest that the observed low ratios in the Sep Reservoir, reflect possible low metazooplankton inputs in the main influents, changes in hydrologic conditions and a high potential role of microheterotrophs. The latter role was supported by (i) the positive inter‐annual correlation between ciliates and phytoplankton, (ii) the significant and negative correlations between ciliates and metazooplankton, and (iii) the significant and negative correlations between total metazooplankton biomass and total phosphorus (TP), whereas neither TP nor total metazooplankton biomass was correlated with phytoplankton variables.  相似文献   

8.
横岗水库富营养化特征分析   总被引:4,自引:0,他引:4  
于2005年5月和11月调查了横岗水库的营养盐、叶绿素a(Chl.a)和浮游植物,对水库富营养化特征进行了分析。5月的总氮(TN)平均浓度为3.810mg·L-1,总磷(TP)平均浓度为0.172mg·L-1,Chl.a平均浓度为17.888mg·m-3,综合营养状态指数(TSIM)为73.3,该水库已达重度富营养化;11月份TSIM下降到55.6,处于轻度富营养化状态,TN和TP平均浓度分别下降到1.302mg·L-1和0.096mg·L-1,Chl.a平均浓度却上升到26.935mg·m-3,Chl.a浓度的上升与氨氮(NH3-N)和正磷(PO4-P)浓度上升以及浮游植物群落组成改变有关。从5月到11月,水库由蓝藻型富营养化水体变为绿藻型富营养化水体。5月浮游植物平均细胞密度高达2.75×108cells·L-1,优势种为美丽平裂藻和银灰平裂藻,其中平裂藻细胞数约占总细胞数的90%。11月浮游植物平均细胞密度降低到1.27×107cells·L-1,平裂藻的优势度下降,只占总细胞数的14.89%,绿藻成为主优势类群,其中栅藻是优势种之一,占总细胞数的11.52%。  相似文献   

9.
The central North Pacific is one of the more oligotrophic regionsof the world oceans. There the particulate organic nitrogen:cabonratio of surface waters is variable and less than the Redfieldratio of 16N:106C by atoms. The phytoplankton P/B ratio basedupon both C and N assimilation rate varied directly with theparticulate matter PON:POC ratio as did the productivity index[mg C (mg chl a)–1h–1]. At steady state the doublingtime of the phytoplankton, the turnover time of the limitingnutrient supplied via herbivore grazing, and the time for herbivoresto filter a unit volume of water would be equivalent. They appearto be of the order of 5–9 days based on present methodologyand straightforward interpretation of its results. The rate measurements involved incubation of water samples forseveral hours in bottles. In the central N. Pacific the valueswere similar using bottles of different sizes. Addition of chelatorsdid not enhance the rates implying no poisoning of the planktonby heavy metal contaminants. The observed specific activitiesof 14C and 15N of the particulate matter in the rate measurementsare inconsistent with the notion of an active, rapidly growingand recycling microplankton food web within the incubation bottlesand support the idea that phytoplankton are growing slowly.  相似文献   

10.
We describe a method for microscopic identification of DNA-synthesizing cells in bacterioplankton samples. After incubation with the halogenated thymidine analogue bromodeoxyuridine (BrdU), environmental bacteria were identified by fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-linked oligonucleotide probes. Tyramide signal amplification was used to preserve the FISH staining during the subsequent immunocytochemical detection of BrdU incorporation. DNA-synthesizing cells were visualized by means of an HRP-labeled antibody Fab fragment and a second tyramide signal amplification step. We applied our protocol to samples of prefiltered (pore size, 1.2 micro m) North Sea surface water collected during early autumn. After 4 h of incubation, BrdU incorporation was detected in 3% of all bacterial cells. Within 20 h the detectable DNA-synthesizing fraction increased to >14%. During this period, the cell numbers of members of the Roseobacter lineage remained constant, but the fraction of BrdU-incorporating Roseobacter sp. cells doubled, from 24 to 42%. In Alteromonas sp. high BrdU labeling rates after 4 to 8 h were followed by a 10-fold increase in abundance. Rapid BrdU incorporation was also observed in members of the SAR86 lineage. After 4 h of incubation, cells affiliated with this clade constituted 8% of the total bacteria but almost 50% of the visibly DNA-synthesizing bacterial fraction. Thus, this clade might be an important contributor to total bacterioplankton activity in coastal North Sea water during periods of low phytoplankton primary production. The small size and low ribosome content of SAR86 cells are probably not indications of inactivity or dormancy.  相似文献   

11.
Parke A. Rublee 《Hydrobiologia》1992,240(1-3):133-141
Microplankton community structures and abundance was assessed in lakes at the Toolik Lake LTER site in northern Alaska during the summers of 1989 and 1990. The microplankton community included oligotrich ciliates, but rotifers and zooplankton nauplii comprised greater than 90% of total estimated heterotrophic microplankton biomass. Dominant rotifer taxa included Keratella cochlearis, Kellicottia longispina, Polyarthra vulgaris, Conochilus unicornis and a Synchaeta sp. Microplankton biomass was lowest in highly oligotrophic Toolik Lake (< 5 μgCl−1 at the surface) and highest (up to 55 μCl−1) in the most eutrophic lakes, experimentally fertilized lakes, and fertilized limnocorrals, consistent with bottom-up regulation of microplankton abundance.  相似文献   

12.
Photosynthetic carbon metabolism and the biochemical compositionof late-winter phytoplankton assemblages in the eastern NorthAtlantic Ocean were studied during an oceanographic cruise carriedout in March 1992. Enhanced levels of phytoplankton biomassand primary production were linked to the subtropical front-AzoresCurrent (STF/AC) region. High values of the relative incorporationof carbon into proteins indicated that the phytoplankton wasgrowing at a rate close to the maximum growth rate. A very highpercentage of carbon was incorporated into the lipid fractionat southern latitudes, whereas incorporation into polysaccharidespeaked at the AC. In general, the biochemical composition ofparticulate matter reflected the observed patterns of photosynthatepartitioning. Latitudinal changes in phytoplankton species compositionaccounted for the geographical variability in 14C labellingpatterns. Turnover times of particulate matter estimated forthe STF/AC region were relatively low (3–5 days) and suggestedbalancedgrowth of the microplankton community over daily timescales.  相似文献   

13.
The phytoplankton productivity of Georgian Bay was studied during 1974. Lakewide samples were collected at 16 stations during monthly cruises from April to December and identification and enumeration was carried out by the Utermohl technique. Contaminant bioassays with metals added singly and as a mixture were performed in 1980 and 1981. Based on an overall average, Diatomeae (36–73%) was the most prevalent component of phytoplankton biomass followed by Chrysophyceae (5–38%), and Cyanophyta (3–27%). Biomass means of all stations by cruise indicated a range of 0.35 to 0.61 g·m–3 with a bimodal seasonal pattern. Although ultraplankton made the highest mean percent contribution to the biomass (37%), the other size assemblages such as < 5 µm (26%) and netplankton (29%) were not unimportant.Size fractionation of primary productivity during 1974 revealed that a major portion of photosynthesis (39–70%) was in the <20 µm size fraction. Algal Fractionation Bioassays conducted during 1980 and 1981 indicated a significant inhibition of ultraplankton productivity. Additional bioassays with single metals and in combination showed differential toxicity to various phytoplankton size assemblages.The phytoplankton biomass and floristic composition indicate the Georgian Bay ecosystem to be oligotrophic. This ecosystem appears to be controlled by the physical dynamics of thermal and flow regimes. Compared with other Great Lakes, the low P/B quotients recorded in oligotrophic Georgian Bay is enigmatic and may be attributable to the observed sensitivity of phytoplankton to contaminants originating from anthropogenic and natural sources.  相似文献   

14.
Phytoplankton growth is a physiological process often limitedby temperature, nutrients or light, while biomass accumulationis a function of growth rates, grazing and deposition. Althoughprimary productivity measurements are usually used to assessresponses to limiting factors, the rates are proportional tobiomass and inversely related to grazing pressure during experimentalincubations. Alternatively, carbon-specific growth-rate determinationsprovide insights into physiological responses without the confoundingeffects of biomass and grazing. The objective of this studywas to quantify the growth-rate responses of phytoplankton toenhanced nutrient availability (nitrate and phosphate) overa range of in situ irradiances. Growth rates were determinedbased on chlorophyll a-specific 14C-uptake rates by phytoplankton.Phytoplankton demonstrated high (24 h) growth rates when exposedto increased concentrations of limiting nutrients, independentof the surface irradiances (12–41%). Growth-rate responseswere also compared with the biomass (chlorophyll a) responsesand community composition. Observed and estimated phytoplanktonbiomass changes during the incubations differed, emphasizingthe structural role of grazers on the phytoplankton community.The phytoplankton community in Galveston Bay has the potentialto instantaneously respond to nutrient pulses, facilitatingdiatom biomass accumulations in spring and summer and small,flagellated species and cyanobacteria during periods of lownutrient inputs. Thus, Galveston Bay phytoplankton biomass andcommunity composition reflect a dynamic balance between thefrequency of nutrient pulsing and grazing intensity.  相似文献   

15.
Respiratory electron transport system (ETS) measurements weremade on the microplankton in the Peru upwelling system near15°S during March, April, and May of 1977. The close associationbetween chlorophyll- biomass and ETS activity indicate thatthe microplankton were predominantly phytoplankton. Phytoplanktonrespiration average 14% of gross fixed carbon. When zooplanktonrespiration in the euphotic zone is considered, the total planktonrespiration represented an average of 19% of gross primary production. *Contribution Number 79002 from the Bigelow Laboratory for OceanSciences.  相似文献   

16.
The role of carbonic anhydrase (CA) in inorganic carbon acquisition (dissolved inorganic carbon, DIC) was examined in Alboran Sea phytoplankton assemblages. The study area was characterized by a relatively high variability in nutrient concentration and in abundance and taxonomic composition of phytoplankton. Therefore, the relationship between environmental variability and capacity for using HCO3? via external CA (eCA) was examined. Acetazolamide (AZ, an inhibitor of eCA) inhibited the primary productivity (PP) in 50% of the samples, with inhibition percentages ranging from 13% to 60%. The AZ effect was more prominent in the samples that exhibited PP >1 mg C · m?3 · h?1, indicating that the contribution of eCA to the DIC photosynthetic flux was irrelevant at low PP. The inhibition of primary productivity by AZ was significantly correlated to the abundance of diatoms. However, there was no a relationship between AZ effect and CO2 partial pressure (pCO2) or nutrient concentration, indicating that the variability in the PP percentage supported by eCA was mainly due to differences in taxonomic composition of the phytoplankton assemblages. Ethoxyzolamide (EZ, an inhibitor of both external and internal CA) affected 13 of 14 analyzed samples, with PP inhibition percentages varying from 50% to 95%. The effects of AZ and EZ were partially reversed by doubling DIC concentration. These results imply that CA activity (external and/or internal) was involved in inorganic carbon acquisition in most the samples. However, EZ effect was not correlated with pCO2 or taxonomic composition of the phytoplankton.  相似文献   

17.
We describe a method for microscopic identification of DNA-synthesizing cells in bacterioplankton samples. After incubation with the halogenated thymidine analogue bromodeoxyuridine (BrdU), environmental bacteria were identified by fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-linked oligonucleotide probes. Tyramide signal amplification was used to preserve the FISH staining during the subsequent immunocytochemical detection of BrdU incorporation. DNA-synthesizing cells were visualized by means of an HRP-labeled antibody Fab fragment and a second tyramide signal amplification step. We applied our protocol to samples of prefiltered (pore size, 1.2 μm) North Sea surface water collected during early autumn. After 4 h of incubation, BrdU incorporation was detected in 3% of all bacterial cells. Within 20 h the detectable DNA-synthesizing fraction increased to >14%. During this period, the cell numbers of members of the Roseobacter lineage remained constant, but the fraction of BrdU-incorporating Roseobacter sp. cells doubled, from 24 to 42%. In Alteromonas sp. high BrdU labeling rates after 4 to 8 h were followed by a 10-fold increase in abundance. Rapid BrdU incorporation was also observed in members of the SAR86 lineage. After 4 h of incubation, cells affiliated with this clade constituted 8% of the total bacteria but almost 50% of the visibly DNA-synthesizing bacterial fraction. Thus, this clade might be an important contributor to total bacterioplankton activity in coastal North Sea water during periods of low phytoplankton primary production. The small size and low ribosome content of SAR86 cells are probably not indications of inactivity or dormancy.  相似文献   

18.
Primary productivity, pico‐, nano‐, microplankton and key environmental factors were studied in a eutrophic coastal area of the Aegean Sea during the winter – spring period. Primary productivity reached high values and showed similar trends of change to those of nanophytoplankton abundance. Nano‐ and microplankton cell densities showed high variability while picoplankton abundance was kept relatively stable. Diatoms dominated nanophytoplankton for most of the winter – spring period while a shift to dinoflagellates was initiated with the development of thermal stratification in late spring. Ciliates and heterotrophic dinoflagellates reached high densities in contrast to heterotrophic nanoflagellates. Our results emphasize the close relation between grazer densities and bacteria, cyanobacteria and nanoplanktic algal changes in this eutrophic coastal area of the Mediterranean.  相似文献   

19.
20.
采用2013—2014年四季度月在金门岛北部海域获取的浮游植物及环境因子监测数据, 分析该区浮游植物的群落结构和季节变化及其与温度、盐度、悬浮物、营养盐、叶绿素等的关系, 初步探讨涉海工程建设对浮游植物群落的潜在影响。结果显示, 鉴定出的浮游植物隶属3门43属82种(不含未定种), 群落构成以硅藻为主, 其次是甲藻, 蓝藻仅1种。物种组成的季节差异较大, 3月物种贫乏, 1月次之, 7月和11月最丰富。四季丰度平均为47.09×103 cells/L, 1月丰度最高, 7月次之, 11月最低, 3月高于11月少许。四季优势种均为硅藻, 13个优势种分别为柔弱几内亚藻(Guinardia delicatula)、短角弯角藻(Ecampia zoodicaus)、骨条藻(Skeletonema spp.)、具槽帕拉藻(Paralia sulcata)、微小海链藻(Thalassiosira exigua)、标志星杆藻(Asterionella notula)、旋链角毛藻(Chaetoceros curvisetus)、新月菱形藻(Nitzchia closterium)、派格棍形藻(Bacillaria paxillifera)、异常角毛藻(Chaetoceros abmormis)、小细柱藻(Leptocylindrus minutum)、宽角曲舟藻(Pleurosigma angulatum)和美丽曲舟藻(Pleurosigma formosum)。不同季节优势种有一定程度交错, 仅在单季占优的有6种, 有2/3在3个以上季节出现, 具槽帕拉藻、骨条藻为四季优势种。浮游植物物种多样性和均匀度总体较好, 群落结构稳定。与毗邻海区相比, 本区物种丰富度偏低, 丰度高于毗邻海区, 种类组成相似, 优势种却有较大差别。Pearson相关分析表明, 溶解无机氮及活性磷酸盐仅在1月与丰度存在极显著的正相关, 是促使丰度为四季最高的原因。涉海工程施工产生的悬浮物和冲击波是影响浮游植物群落的主要因素, 大量海洋工程建设案例表明, 施工期造成的浮游植物丰度下降趋势和优势种更替混乱在工程结束后能得以恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号