首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Choanoflagellates are unicellular and colonial aquatic microeukaryotes that capture bacteria using an apical flagellum surrounded by a feeding collar composed of actin-filled microvilli. Flow produced by the apical flagellum drives prey bacteria to the feeding collar for phagocytosis. We report here on the cell biology of prey capture in rosette-shaped colonies and unicellular “thecate” or substrate attached cells from the choanoflagellate S. rosetta. In thecate cells and rosette colonies, phagocytosis initially involves fusion of multiple microvilli, followed by remodeling of the collar membrane to engulf the prey, and transport of engulfed bacteria into the cell. Although both thecate cells and rosette colony cells produce ∼70 nm “collar links” that connect and potentially stabilize adjacent microvilli, only thecate cells were observed to produce a lamellipod-like “collar skirt” that encircles the base of the collar. This study offers insight into the process of prey ingestion by S. rosetta, and provides a context within which to consider potential ecological differences between solitary cells and colonies in choanoflagellates.  相似文献   

2.
Summary The ultrastructure of the apical plate of the free-swimming pilidium larva of Lineus bilineatus (Renier 1804) is described with particular reference to the multiciliated collar cells. In the multiciliary collar cells there are several, up to 12, cilia surrounded by a collar of about 20 microvilli extending from the cells' apical surface. The cilia have the typical 9+2 axoneme arrangement and are equipped with striated caudal rootlets extending from the basal bodies. No accessary centriole or rostral rootlet were observed. Microvilli surrounding the cilia are joined in a cylindrical manner by a mucus-like substance to form a collar. In comparison with many sensory receptor cells built on a collar cell plan the multiciliary collar cells of the pilidium larva apical plate are rather simple and unspecialized. In other pilidium larvae monociliated collar cells are found in the apical plate. The possible function and phylogenetic implications of multiciliated collar cells in Nemertini are briefly discussed.List of Abbreviations a axoneme - b basal body - c cilia or flagella - d desmosome - G Golgi apparatus - m mitochondria - mf microfilaments - mu mucus - mv microvilli - n nucleus - nt neurotubules - pm plasma membrane - r rootlet - ri ribosomes - v secretory vesicles  相似文献   

3.
Coordinated cell movements shape simple epithelia into functional tissues and organs during embryogenesis. Regulators and effectors of the small GTPase Rho have been shown to be essential for epithelial morphogenesis in cell culture; however, the mechanism by which Rho GTPase and its downstream effectors control coordinated movement of epithelia in a developing tissue or organ is largely unknown. Here, we show that Rho1 GTPase activity is required for the invagination of Drosophila embryonic salivary gland epithelia and for directed migration of the internalized gland. We demonstrate that the absence of zygotic function of Rho1 results in the selective loss of the apical proteins, Crumbs (Crb), Drosophila atypical PKC and Stardust during gland invagination and that this is partially due to reduced crb RNA levels and apical localization. In parallel to regulation of crb RNA and protein, Rho1 activity also signals through Rho-kinase (Rok) to induce apical constriction and cell shape change during invagination. After invagination, Rho-Rok signaling is required again for the coordinated contraction and dorsal migration of the proximal half of the gland. We also show that Rho1 activity is required for proper development of the circular visceral mesoderm upon which the gland migrates. Our genetic and live-imaging analyses provide novel evidence that the proximal gland cells play an essential and active role in salivary gland migration that propels the entire gland to turn and migrate posteriorly.  相似文献   

4.
Sponges are considered to be filter feeders like their nearest protistan relatives, the choanoflagellates. Specialized "sieve" cells (choanocytes) have an apical collar of tightly spaced, rodlike microvilli that surround a long flagellum. The beat of the flagellum is believed to draw water through this collar, but how particles caught on the collar are brought to the cell surface is unknown. We have studied the interactions that occur between choanocytes and introduced particles in the large feeding chambers of a syconoid calcareous sponge. Of all particles, only 0.1-microm latex microspheres adhered to the collar microvilli in large numbers, but these were even more numerous on the choanocyte surface. Few large particles (0.5- and 1.0-microm beads and bacteria) contacted the collar microvilli; most were phagocytosed by lamellipodia at the lateral or apical cell surface, and clumps of particles were engulfed by pseudopodial extensions several micrometers from the cell surface. Although extensions of the choanocyte apical surface up to 16 microm long were found, most were 4 microm long, twice the height of the collar microvilli. These observations offer a different view of particle uptake in sponges, and suggest that, at least in syconoid sponges, uptake of particles is less dependent on the strictly sieving function of the collar microvilli.  相似文献   

5.
Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) is a zoophytophagous insect with a potential for use as a biological control agent in agriculture because nymphs and adults actively prey on various insects by inserting mouthparts and regurgitating the contents of the salivary glands inside the prey, causing rapid paralysis and death. However, the substances found in saliva of P. nigrispinus that causes the death of the prey are unknown. As a first step to identify the component of the saliva of P. nigrispinus, this study evaluated the ultrastructure and cytochemistry of the salivary glands of P. nigrispinus. The salivary system of P. nigrispinus has a pair of principal salivary glands, which are bilobed with a short anterior lobe and a long posterior lobe, and a pair of tubular accessory glands. The principal gland epithelium is composed of a single layer of cells enclosing a large lumen. Epithelial cells of the principal salivary gland vary from cubic to columnar shape, with one or two spherical and well-developed nuclei. Cells of the anterior lobe of the principal salivary gland have an apical surface with narrow, short, and irregular plasma membrane foldings; apical and perinuclear cytoplasm rich in rough endoplasmic reticulum; and mitochondria with tubular cristae. The basal portion of the secretory cells has mitochondria associated with many basal plasma membrane infoldings that are short but form large extracellular canals. Secretory granules with electron-dense core and electron-transparent peripheral are dispersed throughout the cytoplasm. Cells of the posterior lobe of the principal salivary gland are similar to those of the anterior lobe, except for the presence of mitochondria with transverse cristae. The accessory salivary gland cells are columnar with apical microvilli, have well-developed nucleus and cytoplasm rich in rough endoplasmic reticulum, and have secretory granules. Cytochemical tests showed positive reactions for carbohydrate, protein, and acid phosphatase in different regions of the glandular system. The principal salivary glands of P. nigrispinus do not have muscle cells attached to its wall, suggesting that saliva-releasing mechanism may occurs with the participation of some thorax muscles. The cytochemical and ultrastructural features suggest that the principal and accessory salivary glands play a role in protein synthesis of the saliva.  相似文献   

6.
The morphology of pilidia ex gr. recurvatum from Peter the Great Bay (Sea of Japan) was studied by confocal laser scanning and transmission-electron microscopy. The studied pilidium larvae differ from pilidium recurvatum in lacking a posterior ciliary ring and by the presence of a caudal tuft. On this basis, pilidium prorecurvatum is proposed as a new name for the lavae. The apical organ of pilidium prorecurvatum is represented by a thickened epithelium, which consists of uniform columnar monociliary collar cells and is innervated by a pair of serotonergic intraepithelial neurons. The bodies of the serotonergic neurons are located outside of the apical organ, but occasional axons were found at the organ base. The rest of the pilidial epithelium is represented by flattened polygonal multiciliated cells with sparse microvilli; the bodies of two neurons lie in the helmet epithelium immediately adjacent to the apical organ. Morphologically, the apical organ of the pilidium corresponds well to that of other lophotrochozoan larvae, but their homology remains unclear.  相似文献   

7.
The existence of collar cells lining the stomach gastrodermis in free-living Polypodium hydriforme and their ultrastructure are described. The collar cells are provided with a collar consisting of 9–10 microvilli which encircles a central flagellum and forms a flagellar pit. At the bottom of the pit around the basal part of the flagellum there is fine crystalline material which extends also in the spaces between the microvilli and keeps them straight. The flagellum has a typical axoneme (9+2), its basal body is located below the apical surface of the collar cell and continues into a striated rootlet. An accessory centriole is situated close to the upper part of the rootlet. The cell nucleus is located in the basal part of the cell. Prominent mitochondria with tubular cristae, Golgi cisternae and fragments of rough endoplasmic reticulum are situated mostly in the basal part of the cytoplasm. Discoidal vesicles are abundant in the apical cytoplasm. The collar cells are connected to each other by septate junctions and interdigitations. The ultrastructure of collar cells described here is discussed in comparison to that of other Cnidarians and in connection with the problem of Polypodium's systematic position.  相似文献   

8.
Ultrastructural changes of the hatching gland during electrically induced precocious secretion were compared with those during natural secretion in the medaka, Oryzias latipes. The gland cells are covered by a layer of epithelial cells, which adjoin one another just on the apical center of each gland cell. When the natural as well as the precocious secretion occurred, each gland cell was swollen upward and rounded, and separation of the epithelial joints occurred, giving rise to an exposure of the apical portion of the gland cells. There were marked differences between these two kinds of secretion process in the behavior of the secretory granules prior to secretion and in the mode of discharge of the secretory substances. The changes which occurred during both types of secretion and which, therefore, seemed to be essential to the secretory processes of this gland cell were the swelling up of the gland cells in the initiation of secretion and the reduction of the electron density of the zymogen granules. These secretion-associated ultrastructural changes are discussed in view of the difference in the maturation of the gland cells.  相似文献   

9.
The role of the digestive gland, with respect to non-structural lipid, was examined using proximal analysis, histochemistry and quantitative histological techniques in the tropical loliginid squids Sepioteuthis lessoniana (Lesson) and Photololigo sp. The digestive gland of both species was characterized by large and numerous lipid droplets in the apical portion of the digestive cells and very few in the basal portion. The apical lipid droplets were released into the lumen of the gland and subsequently rapidly removed. Despite the numerous large apical lipid droplets, the lipid concentration in the digestive glands of S. lessoniana and Photololigo sp. was lower than that reported for most squid species. There was no relationship between lipid concentration and stage of digestion, suggesting that lipid is not stored in the gland after a meal. There was also no relationship between lipid concentration and the sex of an individual or stage of reproductive maturity, suggesting that these squids are not storing lipid in the digestive gland for use in fuelling reproductive maturation or providing an energy source for oocytes. I believe this study is the first to combine proximal analysis and quantitative histological techniques to examine the role of the squid digestive gland with respect to non-structural lipids. The results indicate that the digestive gland of these tropical loliginid squids is excreting, not storing, excess dietary lipid.  相似文献   

10.
Secretary activities associated with the rostellum of adult Echinococcus granulosus were studied using histological, histochemical, and ultrastructural techniques, following rapid fixation of the cestodes in situ in the small intestine of the anaesthetised dog. Studies concentrated on the host-parasite interface from 30 to 35 days postinfection. At this time, contraction of the muscular rostellar pad appeared to be associated with extension of the apical rostellum into a crypt of Lieberkühn. Crypt invasion by the apical rostellum coincided with morphological changes and secretory activity in a group of modified tegumental cells, previously referred to as the rostellar gland. Secretory material, a cystine-rich protein, was observed in the nuclei and cytoplasm of the rostellar gland cells. Release of this material into the interface was seen only following crypt invasion by the apical rostellum. Although the mechanism of release is not clear, it may be analagous to holocrine secretory mechanisms, since apparent degeneration of the rostellar gland region was associated with secretion. Possible functional activities of the secretion associated with hook formation, nutrition, regulation, adhesion, and protection are discussed.  相似文献   

11.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

12.
Phoretic deutonymphs of uropodid mites are attached to their carrier via an anal pedicel which is formed by a secretion from the pedicellar gland. Since the ultrastructure of the pedicel and pedicellar gland has never been investigated, we studied these structures in three species, Uropoda orbicularis (Müller), Uroobovella marginata (Koch), and Trichouropoda ovalis (Koch) by light (LM) and electron microscopy (TEM, SEM). In addition, the pedicel in Uroobovella nova (Oudemans) was documented in SEM.The pedicellar gland is a distinct globular structure comprised of three types of secretory cells (A-, B-, and C-types) with apical parts directed towards a junctional zone of postcolon and anal atrium. Secretory cells of the A-type are located dorsally, whereas B-type cells are central, and C-type cells are distributed ventrally or both ventrally and dorsally. Protrusions of visceral muscle cells are distributed on the external surface of the gland. The cuticle-lined anal atrium is large and located between the gland and dorso-anal muscles. The pedicel is composed of a main stalk and two extended extremities: one adhering to the anal region of the deutonymph and a second connected to the cuticle of the carrier. In each case, the anal atria were empty, whereas the pedicellar material was located outside of the mite body.  相似文献   

13.
Dunn T. S., Hanna R. E. B. and Nizami W. A. 1987. Ultrastructural and histochemical observations on the epidermis, presumptive tegument and glands of the miracidium of Gigantocotyle explanatum (Trematoda: Paramphistomidae). International Journal for Parasitology17: 885–895. The miracidium is invested with 20 ciliated epidermal cells arranged in four tiers (6: 8: 4: 2 = 20). Non-ciliated ridges of cytoplasm, located between the epidermal cells, are continuous with an extensive multivesiculate syncytium which underlies the body musculature and comprises the main bulk of the miracidium. It is suggested that the syncytium represents the presumptive sporocyst tegument. Two distinct types of glands are present in the anterior region of the miracidium, viz. a large, syncytial apical gland and a single pair of small, unicellular lateral glands. The apical papilla is formed by the bounding membrane of the apical gland, which is elevated into a complex network of anastomosing lamellae. The lateral glands terminate in discrete rosetteshaped areas on the apical papilla. The possible function of glands in digenetic miracidia and the nature of their secretions are discussed.  相似文献   

14.
The paired accessory glands of the male mosquito, Aedes triseriatus, consisted of a single layer of columnar epithelial cells enclosed by a richly-nucleated circular muscle layer. Each accessory gland is divided into an anterior gland (AG) with one type of secretory cell, and a posterior gland (PG) with two types. The cells of the AG and those of the anterior region of the PG showed macroapocrine secretion. The mucus secreting cells located at the posterior region of the PG, however, released their contents into the lumen of the gland by rupturing the apical membrane of the cell. The secretion from all cells was in the form of membrane-bound granules which had distinct electron-dense and electron-lucent areas.  相似文献   

15.
The stratified epithelium of the central collecting duct of the elasmobranch(Scylliorhinus canicula, Galeorhinus galeus andRaja batis) rectal gland consists of 3 to 6 layers of cells: one superficial, and several basal cell layers. In the superficial layer normally three different types of cells can be distinguished (a) goblet cells, (b) cells with apical secretory granules and (c) flask-shaped cells. The superficial layer ofScylliorhinus canicula reveals a further cell type, so-called mitochondria-rich cells. The epithelial areas built by these cells are always single-layered. The goblet-cells are very similar to goblet cells found in the intestine of vertebrates. Their dominant structures are a well developed ergastoplasm, a large Golgi-apparatus and mucous granules compactly filling the apical cell region. The cells with apical secretory granules are columnar or dumbbell shaped. They contain a rough-surfaced endoplasmic reticulum and a well developed Golgi-apparatus. The secretory granules are loosely distributed within the Golgi-field and are arranged in one or more rows just below the cell apex. The flask shaped cells are characterized by a cytoplasm rich in small vesicles. They posses few dictyosomes and several small mitochondria. There is some evidence for endocytotic activity. The mitochondria-rich cells are characterized by lateral cell interdigitations, by a basal labyrinth and by numerous mitochondria. They are similar to the excretory cells of rectal gland parenchyma. The cells of the basal epithelium layers are differenciated only to a small extent. They are joined in a loose formation with white blood cells often found in the intercellular spaces. The function of the elasmobranch rectal gland is not restricted to the excretion of concentrated salt solutions. There is also a significant secretion of mucous substances. The tubule glands are primarily excretory, the epithelium cells of the central collecting duct mainly secretory in function.  相似文献   

16.
The differentiation and degeneration of the cement gland in Xenopus laevis is described. The gland is first observed histologically at stage 19 (neural tube stage) as a packed group of apical ectoderm cells heavily laden with oocyte pigment granules, lying ventral to the cranial neural fold. By tailbud stage 35/36, the gland cells have increased in height and are approximately ten times taller than nonglandular apical ectoderm cells. The nuclei divide the gland cells into an apical region that is eosinophilic and contains oocyte pigment granules, and a basal region that contains clear droplets. The cells are decreasing in height by stage 40 (early tadpole) and begin to lose their pigment granules. Between stages 45 and 48, the pigment is extruded and the clear basal droplets diminish in number. From stage 48 to 49 the cells become vacuolated and the histotypic characteristics of the functional gland are lost. The gland is not vascularized, nor do phagocytic cells appear in its vicinity during any stage of its development. It remains bordered at its base by subjacent basal ectoderm during its entire life cycle of 10 to 12 days at room temperature.  相似文献   

17.
Summary Aestivating Otala lactea have been shown to reduce the rate of evaporative water loss from the cells of the mantle-collar epithelium to a level comparable to that of an insect. X-ray microanalyses of ultrathin frozen sections from aestivating and non-aestivating snails have shown gradients of chloride and potassium ions in the apical microvillus region of the regulating mantle collar epithelium. The greatest difference in osmotic concentration occurs in the apical 2 m of the cell. There appears to be a barrier at that level that prevents water being mobilised from the underlying tissues. Methods of presenting data generated by X-ray microanalysis are also discussed.  相似文献   

18.
Schistosoma mansoni: penetration apparatus and epidermis of the miracidium   总被引:1,自引:0,他引:1  
Free swimming miracidia of Schistosoma mansoni were studied with the electron microscope for the purpose of describing the penetration apparatus and the epidermis. The penetration apparatus was composed of 3 unicellular glands which contain membrane-bound vesicles containing macromolecular diglycols. Each gland contained a nucleus, rough endoplasmic reticulum, Golgi complexes, numerous mitochondria, and glycogen stores. Each gland cell opened to the exterior through the apical papilla.The surface of the miracidium, with the exception of the apical papilla, was covered with ciliated epidermal cells containing numerous mitochondria, membranous bodies, and glycogen. No nuclei were detected within these epidermal cells. Intercellular ridges connecting with subepidermal cytons interrupted the epidermal cells at numerous points. The ridges were joined to the epidermal cells by septate desmosomes. Beneath the epidermal cells were found circular and longitudinal muscle bundles.Sensory structures of various types were associated with the outer covering. These consisted of (1) numerous “knob-like” cytoplasmic projections associated with epidermal cells, (2) bulbous, lamelloid structures with external cytoplasmic projections, and (3) ciliated nerve endings with posterior epidermal tiers and ciliated nerve pits associated with apical papilla.  相似文献   

19.
The fine structure of the reproductive accessory gland of the parthenogenetic thrips Heliothrips haemorrhoidalis (Thysanoptera : Thripidae) is reported. It consists of an apical bulb and a fine gland duct. The former consists of an epithelium with secretory and duct-forming cells surrounding a large gland lumen lined with a thin cuticle and filled with dense secretion. Spent secretory cells degenerate and are eliminated from the epithelium. The gland duct is characterized by an irregular, branched lumen surrounded by a very flat epithelium. A valve controls the opening of the duct lumen. The proximal gland duct runs through a cuticular papilla that opens between the dorsal ovipositor valves. The secretions may serve for ovipositor valve lubrication and possibly to protect laid eggs. Observations of serial sections through the vagina exclude the presence of a spermatheca in this species.  相似文献   

20.
The entire nervous system of the smallest annelid hitherto known, the dwarf male of the highly dimorphic species Dinophilus gyrociliatus , has been reconstructed by means of TEM investigations of serial ultrathin sections. Altogether there are 68 neurons, 40 of which have a sensory function. The structure and distribution of them is described. The receptor endings of the 20 sensory cells of each side are located either in two groups — the anterior receptor group and the posterior receptor group — or are singly positioned in the integument. Structural differences of the apical portion of the dendrites enables four types of receptors to be distinguished: three types with emergent cilia and one type with non-emergent cilia. Neurons with emergent cilia can be monociliated collar cells as well as mono- or multiciliated cells without collar. Special vesicle-in-vesicle structures, are located close to the basal portion of the cilia in some of these cells. The non-emergent cilia border closely to a neighbouring epidermal cell and contain a prominent intraciliary vesicle. The function of receptors is discussed with regard to a comparison with receptors in other polychaete species, structural specializations and their distribution pattern on the animal's surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号