首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The influence of feeding on the metabolic activity of juvenile krill was assessed from 24h experiments in which krill were incubated with various concentrations of diatoms (Chaetoceros calcitrans, Phaeodactylum tricornutum, Thalassiosira eccentrica, Fragilariopsis vanheurkii), newly hatched Artemia nauplii and latex beads. Krill fed on the larger food more efficiently, with reluctant feeding on latex beads. Feeding of krill expressed as clearance rates was poorly correlated with their oxygen uptake rates. Instead, a positive correlation was found between the oxygen uptake rates and ingestion rate (except for latex beads). The result implies that the specific dynamic action is the major cause of the increased oxygen uptake of krill. Krill fed diatoms increased both ammonia and phosphate excretion with increasing ingestion rate, but only phosphate excretion was increased in parallel with ingestion rate for those fed Artemia nauplii. Assuming the daily ration of krill in the field is 5% of the body weight, and the major food source is phytoplankton, oxygen uptake, ammonia excretion and phosphate excretion rates of wild krill are estimated to be 1.6, 4.5 and 7.8, respectively, times the rates of non-feeding krill in 24h laboratory experiments. Krill offered various kinds of food showed different metabolic quotients (O/N, N/P and O/P ratios). While no functional relationship was seen between the metabolic quotient and the ingestion rate of krill fed Artemia nauplii, those fed Fragilariopsis showed a progressive decrease in O/N, N/P, and O/P ratios as their ingestion rates increased.  相似文献   

2.
Two 60‐day experiments were carried out on tench (Tinca tinca L.) from day 5 post‐hatch. Density was 20 larvae L?1 and temperature 24 ± 0.5°C. In experiment 1, Artemia nauplii were the sole food, testing nauplii amounts and feeding frequency. High survival rates (between 79.5% and 95.5%) were obtained. Growth was faster as nauplii amounts were greater; the highest growth rate (11.00), weight (265.5 mg) and Fulton’s coefficient (1.40) were obtained when fish were fed in excess once a day, without significant differences from the growth obtained by feeding in excess of eight times a day. In experiment 2, a dry diet for marine fish was tested as a replacement for Artemia nauplii, following two transition protocols, one faster than the other; high survival rates (between 77.7% and 87.1%) were again obtained. The slower transition allowed a growth rate of 10.14, length of 23.1 mm, weight of 158.3 mg and a Fulton’s coefficient of 1.28, without significant differences from the faster transition. At all stages, growth values were significantly higher from feeding nauplii in excess as the sole food, but the required nauplii quantity was six times higher than the amount supplied to the animals fed the dry diet.  相似文献   

3.
The feeding of Diaphus theta in the zone of the subarctic front and in Pacific waters off the Kuril Islands in November 2001 and in July–August 2002 was studied. Interzonal plankton [euphausiids (mainly Euphausia pacifica), copepods (Metridia pacifica), and amphipods (Themisto pacifica)] dominated in the food bolus. As fish grow, the proportion of copepods decreases, the proportion of euphausiids and amphipods increases in stomachs, and the food spectrum extends. One considerable peak in the feeding (in both the summer and autumn periods) occurring in the nighttime was revealed. The most intensive feeding takes place in the dark time of the day in the epipelagial due to euphausiids and amphipods; in the light time of the day, the feeding activity declines. Fish feed mainly on copepods in the upper pelagial. The daily ration of D. theta was 1.5% of the weight of fish in the summer period and 3.2% in the autumn period.  相似文献   

4.
Aetideus divergens Bradford is representative of a large group of marine planktonic calanoid copepods which are omnivores or mixed feeders. Because very little quantitative information is available on the feeding behavior of these copepods, laboratory feeding experiments have been carried out with adult female A. divergens presented with various sizes and concentrations of diatoms and freshly hatched nauplii of Artemia. The copepod fed most efficiently on the largest size of diatom and on Artemia nauplii, but was peculiarly inefficient at feeding on small diatoms, even when they were available at very high concentrations. In this respect, the copepod differs from filterfeeding copepods, such as Calanus pacificus Brodsky. A possible explanation of this difference depends upon Aetideus being less capable of handling very small food particles than Calanus. Aetideus divergens and its congeners usually occur at subsurface depths not far below the mixed layer and seem to be adapted for feeding on large particles, possibly large phytoplanktonic organisms and fecal pellets, which sink out of the mixed layer.  相似文献   

5.
Editorial     
Postlarvae of two atherinid species, Menidia menidia (L.) and Menidia beryllina (Cope), were tested in two 14-day experiments at four densities of fish to determine effects of interspecific versus intraspecific competition for food. In one experiment, when M. menidia was slightly larger than M. beryllina (simulating a slightly earlier hatching time in nature) M. menidia exhibited a clear competitive advantage over M. beryllina, as demonstrated by covariance analysis of fish biomass change on fish density. In the second experiment, when M. beryllina was larger than M. menidia, neither species showed competitive advantage. The results suggest that M. menidia has an inherently superior ability to compete for food. Results of the experiment in which M. menidia was the larger species indicate the selective pressures which could have caused the two species to evolve spawning times ≈1 month apart.In another set of experiments, post-larval and juvenile M. menidia and M. beryllina were fed wet weight rations of Artemia nauplii ranging from 10–640% of initial body weight per day during a series of three 10-day feeding trials. As Menidia menidia grew, they required a smaller percentage of body weight per day in food for maximum growth (640, 320, and 160% for the three feeding trials). The same trend was observed with M. beryllina, although the percentages (160, 160, and 80%) were much less than those for M. menidia. Menidia menidia also required more food per day (20–135% of body weight) as a minimum ration for survival and growth than did M. beryllina (5–60%). The explanation for these differences may be that M. menidia in nature hatch earlier in the year, when Zooplankton is more abundant, than do M. beryllina. The two species have apparently evolved different feeding requirements as adaptations to the different food availabilities that they encounter.  相似文献   

6.
Little is known about the larviculture of the chub, Leuciscus cephalus (L.), an endangered cyprinid species endemic to European flowing waters. The use of decapsulated Artemia cysts as food for chub larviculture was investigated. After 3‐day feeding with the rotifer Brachionus calyciflorus, the larvae were fed on different diets: (i) dried decapsulated Artemia cysts, (ii) Artemia nauplii, (iii) rotifers for seven more days and then Daphnia collected from a pond, and (iv) an artificial diet. After a 24‐day rearing period, the highest survival rate was obtained with the larvae receiving decapsulated Artemia cysts. Feeding of the larvae with an artificial diet resulted in a significantly lower survival rate compared with the other groups. At the end of the experiment, the larvae fed on Artemia nauplii yielded a significantly higher mean length compared with the other groups. Feeding an artificial diet resulted in a significantly lower average weight and mean length gain compared with the other groups.  相似文献   

7.
A bioluminescence chemical oceanography research cruise (Varifront III) through the Sea of Cortez from November through December 1981 provided an opportunity to investigate plankton associated with a brilliant and extensive display of surface water bioluminescence at the north end of Balleñas Channel. New observations of bioluminescence were made on larval stages of the euphausiid Nyctiphanes simplex Hansen (Calyptopis II, Furcilia I, II, and III, and juveniles) and Euphausia eximia Hansen (Calyptopis I), the Calanoida copepods Centropages furcatus Dana, Paracalanus indiens Wolfenden, Acrocalanus longicornis Giesbrecht, the Cyclopoida copepods Corycaeus (Corycaeus) speciousus Dana, Corycaeus (Onychocorycaeus) latus Dana, and several dinoflagellates Ceratium breve Ostenfeld and Schmidt, Ceratium horridum Gran, and Ceratium gibberum Gourret. These observations indicate the increasing importance of some of the smaller copepods and larval euphausiids contributing to surface bioluminescence.  相似文献   

8.
The feeding activity of an individual fish larva is described by an equation which includes parameters for the area successfully searched, probability of food capture multiplied by the cross-sectional perceptive visual field, larval swimming speed and the time required to consume a unit of food energy. The proportion of ingested food energy used for metabolism increases exponentially with increasing swimming speed. The model predicts that food consumption rate increases asymptotically whereas metabolic rate increases exponentially. This results in a predicted growth rate curve that reaches a maximum at a certain swimming speed and decreases at both higher and lower speeds. The model can be used to predict the influence of type of prey, prey density, water temperature etc. on larval growth. An expression describing how many hours per day fish larvae must forage in order to grow at a certain daily body weight gain allows the limits of environmental conditions for positive, zero and negative growth rate to be set. Results of simulations demonstrated that the optimum swimming speed for maximum growth of coregonid larvae increased with an increase in food density, decrease in water temperature or decrease of prey vulnerability. At optimum ‘theoretical’ swimming speed an increase in water temperature from 5 to 17° C required the food density to be increased from 20 to 80 copepods l?1 in order to maintain a daily growth increment of 2%. The minimum Artemia density required for maintenance metabolism increased from 10 to 30 items 11 over the same temperature increase from 5 to 17° C, and food densities required for 8% growth rates were 26 and 56 Artemia nauplii l?1 at 5 and 17° C, respectively. Contrary to previous findings, results of the present study suggest that metabolic rates of actively feeding fish larvae may be from 5 to 50 times the standard metabolic rate: earlier studies suggested that a factor of 2–3 may be generally applicable.  相似文献   

9.
Meganyctiphanes norvegica (M. Sars) will feed upon the centric diatom Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle but cannot fulfil its energy requirement for metabolism on this food. Its daily metabolic requirement can be exceeded when the euphausiid feeds upon the copepods Calanus finmarchicus Gunner or Centropages typicus Krøeyer, but not when feeding upon the smaller copepods Pseudocalanus spp. or Acartia spp. When feeding upon a natural copepod assemblage Meganyctiphanes norvegica requires high concentrations of copepods to achieve its metabolic requirements, suggesting that the euphausiid may exploit vertically patchy concentrations of prey. Short-term predation rates on Pseudocalanus spp. were also used to estimate feeding rates. Feeding in Meganyctiphanes norvegica appears to be adapted to a spatially variable food supply and rapid exploitation of food sources concentrated into patches or layers. The filter area of the feeding basket of M. norvegica is proportionally smaller than the filter area of Euphausia superba Dana, but has the same allometric length exponent. The filter area probably reflects the difference between the primarily carnivorous diet of Meganyctiphanes norvegica and herbivorous diet of Euphausia superba.  相似文献   

10.
The growth of river catfish Mystus nemurus (Cuvier & Valenciennes) larvae fed four isocaloric diets (4200 kcal kg?1) with different protein levels during weaning was determined. Diets containing 45, 50, 55, and 60% protein were formulated by linear programming using amino acid profiles based on that of 2‐day‐old river catfish larvae. Artificial diets were fed to the larvae beginning at day 5 after being initially fed Artemia nauplii for 4 days. The larvae thrived solely on artificial diets from day 8 to day 16. On the other hand, the control larvae were fed Artemia nauplii from day 1 to day 16. Results of the feeding trial showed that growth and survival of M. nemurus larvae given the diet containing 60% protein were high and comparable to those of the larvae given only live food (control). Larvae fed the 55% protein diet had significantly lower growth and survival than the larvae on the control and 60% diets but significantly higher growth and survival rates than did larvae fed with 45 and 50% protein diets. Carcass moisture and total lipids after 16 days of feeding did not differ significantly (P > 0.05), but body protein increased with increasing dietary protein. Body protein of the control larvae was similar to that of larvae given the 60% protein diet.  相似文献   

11.
In laboratory experiments, adults and nauplii of the calanoid copepod Acartia tonsa Dana feed on planktonic ciliates and rotifers. Adults have a higher clearing rate for planktonic ciliates and rotifers than for phytoplankton. Adult copepods have a maximum clearing rate of ≈200 ml copepod−1 · d−1 for large ciliates, with lower clearing rates for small ciliates. Nauplii have higher clearance for small than for large ciliates. Addition of ciliates or rotifers to the diet of A. tonsa enhances egg production; this effect is due to improved food quality. Microzooplankton may be an important component of the diet of A. tonsa even when phytoplankton are plentiful. Selective predation by copepods probably influences the population dynamics of planktonic ciliates and rotifers in coastal waters.  相似文献   

12.
Larvae of Carcinus maenas L. were reared in the laboratory and temperature-dependent stage durations of successive instars were examined at 12, 15, 18, and 25°C. Feeding rates (FR), in numbers of newly hatched Artemia nauplii, biomass, and energy consumed by a single crab larva during 24 h, were measured daily through the moulting cycles of all larval stages at the four temperatures. Dry weight (DW) and elemental content of carbon (C), nitrogen (N) and hydrogen (H) were analysed in newly hatched (0 h) and 1-day-old (24 h) Artemia nauplii at six temperatures (6, 9, 12, 15, 18, 25°C). Due to a 24 h feeding regime, the temperature dependent “mean nutritive value” of newly hatched brine shrimp nauplii is defined, individual biomass (DW, C, N, H) and energy (Joule) 12 h after hatching. General figures in changing individual daily FR, and temperature-dependent peculiarities are discussed. The total amount of food ingested by successive larval instars increases exponentially, while the increasing cumulative quantity consumed by individual crab larvae on successive days of development is described by power functions. At higher temperatures significantly less absolute biomass and energy is consumed during the entire larval development. C. maenas megalops are the main energy consumers in larval life, contributing 41 to 67% (12 to 25°C) to the total larval energy intake between hatching and metamorphosis. Larval ability to adapt to increasing metabolic costs for maintenance in higher water temperatures is discussed with average daily feeding rates (AFR). Improved efficiencies are presented for the cumulative larval energy budget, 31% in assimilation, and 4.4% in gross growth (K1).  相似文献   

13.
Burbot Lota lota L. is one of the endangered freshwater fish species in western Europe for which the development of controlled larval rearing procedures could produce enough material for stock enhancement. The suitability of the freshwater rotifer Brachionus calyciflorus as a start food for larviculture of burbot was investigated. After yolk‐absorption, the larvae were stocked in 40‐L tanks under different feeding conditions: clear water rearing conditions with rotifers (Brachionus calyciflorus) for 10 days (R), green water conditions (Chlorella sp.) with rotifers offered for 10 days (MALR), green water conditions (Chlorella sp.) for 3 days followed by clear water in combination with rotifer feeding for 7 days (AL3R), and clear water conditions with Artemia nauplii offered for 10 days (Art). After the 10‐day feeding, all groups received Artemia nauplii up to 35 days post‐hatching. Larval survival was counted at day 10 and at the end of the 35‐day rearing experiment. At day 35, a significant survival difference was noted between the groups where rotifers were supplemented with algae vs only Artemia. At the end of the experiment, the highest survival rate (69.20%) was obtained with larvae receiving only algae in the first 3 days of feeding. Lowest survival rate (24.90%) was obtained with larvae receiving only Artemia for 35 days. This indicates that smaller prey are essential for burbot at first feeding. Larval length and wet weight were measured at the time of mouth opening, at days 7, 10, and 21, and at the end of the experiment (day 35). On day 35, mean length of the larvae varied significantly between the treatments. However, the final wet weight of the larvae did not vary significantly between the treatments.  相似文献   

14.
Several dinoflagellate species form nonmotile, thick-walled resting cysts in their life cycle. Cysts can be ingested by planktonic and benthic organisms, but there is scarce information concerning their survival after the passage through the digestive apparatus of the grazers. We tested the germination capability of cysts produced by two neritic dinoflagellates, Scrippsiella trochoidea (F. Stein) A.R. Loeblich and Scrippsiella ramonii Montresor, after their ingestion by four copepod species. Experiments have been carried out with four species: Acartia clausi Giesbrecht, 1889; Centropages typicus Kröyer, 1849; Temora stylifera Dana, 1849; and Clausocalanus lividus Frost and Fleminger, 1968. Copepods were fed either with motile cells or cysts, and feeding and clearance rates were estimated for A. clausi, C. lividus and T. stylifera. Grazing rates on both dinoflagellates was much higher for vegetative cells than for cysts. Resting cysts were isolated from the faecal pellets and incubated to test their germination capability. S. trochoidea cysts eaten by C. typicus and T. stylifera showed a high germination rate, while cysts of the same species were not viable after the passage through the gut of A. clausi and C. lividus. In contrast, S. ramonii cysts were never able to germinate after being ingested by copepods. The observed variation in viability among the two cyst types and the different survival rates observed for S. trochoidea cysts might be related to differences in cyst morphology and to differences in the digestive process among the tested copepod species.  相似文献   

15.
The use of Panagrellus redivivus as live feed for bighead carp and Asian catfish larvae was tested. In experiment 1, carp larvae were given Artemia nauplii (control) or Panagrellus twice daily for 21 days. A third treatment consisted of unfed larvae. The same three treatments were used in experiment 2 plus another with a commercial entomopathogenic nematode (EPN). Bighead carp larvae given Panagrellus in experiment 1 had much lower growth and survival than those fed Artemia nauplii. This could be due to low nematode density (5–30 mL?1 water) during feeding. The unfed larvae had 100% mortality by days 11–13. In experiment 2, growth and survival of carp larvae given Artemia nauplii (5–10 mL?1) and Panagrellus (50 mL?1) did not differ significantly (P > 0.05). All unfed larvae had died by day 13, while larvae fed EPN were all dead by day 8. Two experiments on Asian catfish were likewise conducted. In experiment 1, the catfish larvae were fed Tubifex (ad libitum), Panagrellus (50–100 mL?1 per feeding) orArtemia (5 nauplii mL?1 per feeding) three times daily for 14 days. In experiment 2, larvae were fed Artemia alone (10 nauplii mL?1 per feeding), Panagrellus alone (100 mL?1 per feeding), or their combination with a 38% protein dry diet twice daily. For both experiments, catfish larvae fed Panagrellus had significantly lower growth and survival than those fed Tubifex or Artemia. The combination of Panagrellus and dry diet created little improvement in the growth and survival of catfish larvae.  相似文献   

16.
Laboratory cultures of Artemia franciscana grown under batch regimes at constant temperatures (28 °C) and salinity (35 g l–1), three initial food concentrations (0.1, 0.4 and 1 M cells ml–1), various daily food rations (0.1–9M Dunaliella tertiolecta cells Artemia –1), and different population densities (1–16 ind ml–1) were used to develop a model of population growth. Growth rates and gross growth efficiencies (K 1) were largely independent of population densities and initial food concentrations but determined by age and daily amount of food ingested. While maximum growth rates were found with the highest rations, K 1 max peaked at rations of 0.5 million cells d–1 and decreased at feeding levels above this. A contour plot showing the trend relating K 1 to Artemia size and ingestion rate in combination and was used to model growth in analogous controlled feeding conditions. Computer simulations using this model paralleled published results of final 15-day average individual sizes of Artemia. Optimal results for near constant food utilization are predicted for high initial population densities (100 Artemia nauplii ml –1) and daily culls of enough animals to equilibrate food demand with food availability. This strategy could permit a range of Artemia sizes harvested, maximize final individual sizes and retain high total yields (> 1.2 kg dry wt 1–1). Effects of different culture strategies are discussed.  相似文献   

17.
By incorporating the free‐swimming nematode Turbatrix aceti into early feeding regimes of the European whitefish Coregonus maraena, the suitability of this nematode species was investigated as an alternative to Artemia nauplii. During a 14‐day feeding trial in a total of 25 aquaria each 1.7 L (each treatment n = 5, 255 larvae/tank) T. aceti was used either as the sole live food or in combination with Artemia nauplii or microdiet to determine the effect of T. aceti on growth performance and survival rate of C. maraena. By analysing the fatty acid composition of T. aceti prior to and after enrichment with INVE spresso® it was investigated whether the amount of n3‐polyunsaturated fatty acids (n3‐PUFA) in T. aceti could be further enhanced. Supplementation of Artemia nauplii with T. aceti increased growth significantly within the first 5 days of rearing in comparison to the non‐supplemented food treatments (14.39 ± 0.15 mm compared to 13.44 ± 0.18 mm; mean ± SE). However, growth and survival of juvenile C. maraena on nematode‐supplemented Artemia nauplii did not differ significantly from non‐supplemented Artemia nauplii at the end of the 14‐day rearing period (15.22 ± 0.15 mm compared to 14.86 ± 0.24 mm). All feeding treatments containing Artemia nauplii showed significantly higher growth and lower mortality at the end of the experiment in comparison to diets containing only the microdiet or T. aceti or a combination thereof. The overall low performance of T. aceti alone can most likely be explained by an insufficient capacity of C. maraena to digest this nematode species efficiently. Enrichment with INVE spresso® successfully increased the proportion of DHA in the T. aceti tissue. The results reveal that T. aceti cannot be considered a full alternative to Artemia nauplii, at least not in the rearing of C. maraena, but might be a useful vector of essential fatty acids within the early rearing period of this and potentially other fish species when provided as live food along with Artemia nauplii.  相似文献   

18.
We determined in situ feeding rates of three co-occurring coastal mysid species using [methyl-3H]-thymidine-labelled algal detritus (Lessonia corrugata), NaH14CO3-labelled phytoplankton (Isochrysis galbana) and zooplankton (Artemia sp. nauplii). All three species showed a wide and overlapping range of feeding rates on the three food types, suggesting they were broadly omnivorous. However, selectivity studies often showed a strong preference for animal prey. Although there was an overlap in the types of food the mysids ingested, some degree of feeding niche partitioning was demonstrated. Paramesopodopsis rufa tended to be more carnivorous, Tenagomysis tasmaniae fed least on zooplankton and phytoplankton, and largely on algal detritus, and Anisomysis mixta australis ingested few zooplankters, and moderate amounts of algal detritus and phytoplankton. Handling editor: P. Viaroli  相似文献   

19.
In the last decades there have been several evidences that traditionally used live preys like rotifers and Artemia salina have nutritional deficiencies that result in a general decrease of fish health, causing anomalies in the development, in growth and in pigmentation. In this study a partial of total replacement of traditional live preys with preserved copepods that represent the natural food of the larvae was evaluated during Solea solea culture. In this study a positive effect of co-feeding preserved copepods in sole larviculture was observed since larvae fed this diet growth and survived better, showed a better tolerance to captive conditions and had a better response to the final thermal/density stress-test with respect to larvae fed a traditional diet. Morphometric data were fully supported by molecular and biochemical ones. Moreover, liver histological investigations, revealed that the inclusion of preserved copepods in the larval diet was able to improve lipid assimilation. In conclusion, preserved copepods may be considered a suitable food for sole when used as a supplement to the traditional diet based on rotifers and Artemia nauplii.  相似文献   

20.
Egg production, daily ration, and growth efficiency in Sagitta crassa Tokioka are described along with the morphological characteristics of the ovary and body during laboratory observations. Feeding by S. crassa in small containers containing 50 or 100 ml sea water and feeding rates bore a linear relationship to food concentration from 5 to 20 copepods per 100 ml. Among 100 animals individually isolated in containers, 3 animals were the longest lived and the best egg producers. One of these produced eggs on more than 30 consecutive days, producing almost 1000 eggs. Egg production showed periodic change at intervals from 7 to 10 days. Seminal vesicles also became periodically filled or empty. Fluctuations in ovary length and morphological changes of ovary and body were observed through life. Daily ration of S. crassa ranged from 8.7 to 10.4 prey per day or ≈ 60 μg in dry wt. The specific daily ration ranged from 0.347 to 0.568. S. crassa had a growth efficiency (dry-wt basis) which increased during the early life of the animal (≈28%), then decreased with age (22 → nearly 0%). Reproductive efficiency ranged from 7.0 to 16.4%, with a mean of 12.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号