首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reticulocytes contain a nonlysosomal, ATP-dependent system for degrading abnormal proteins and normal proteins during cell maturation. Vanadate, which inhibits several ATPases including the ATP-dependent proteases in Escherichia coli and liver mitochondria, also markedly reduced the ATP-dependent degradation of proteins in reticulocyte extracts. At low concentrations (K1 = 50 microM), vanadate inhibited the ATP-dependent hydrolysis of [3H]methylcasein and denatured 125I-labeled bovine serum albumin, but it did not reduce the low amount of proteolysis seen in the absence of ATP. This inhibition by vanadate was rapid in onset, reversed by dialysis, and was not mimicked by molybdate. Vanadate inhibits proteolysis at an ATP-stimulated step which is independent of the ATP requirement for ubiquitin conjugation to protein substrates. When the amino groups on casein and bovine serum albumin were covalently modified so as to prevent their conjugation to ubiquitin, the derivatized proteins were still degraded by an ATP-stimulated process that was inhibited by vanadate. In addition, vanadate did not reduce the ATP-dependent conjugation of 125I-ubiquitin to endogenous reticulocyte proteins, although it markedly inhibited their degradation. In intact reticulocytes vanadate also inhibited the degradation of endogenous proteins and of abnormal proteins containing amino acid analogs. This effect was rapid and reversible; however, vanadate also reduced protein synthesis and eventually lowered ATP levels in the intact cells. Vanadate (10 mM) has also been reported to decrease intralysosomal proteolysis in hepatocytes. However, in liver extracts this effect on lysosomal proteases required high concentrations of vanadate (K1 = 500 microM) and was also observed with molybdate, unlike the inhibition of ATP-dependent proteolysis in reticulocytes.  相似文献   

2.
Vanadate is a phosphate analogue that inhibits enzymes involved in phosphate release and transfer reactions (Simons, T. J. B. (1979) Nature 281, 337-338). Since such reactions may play important roles in endocytosis, we studied the effects of vanadate on various steps in receptor-mediated endocytosis of asialoorosomucoid labeled with 125I-tyramine-cellobiose (125I-TC-AOM). The labeled degradation products formed from 125I-TC-AOM are trapped in the lysosomes and may therefore serve as lysosomal markers in subcellular fractionation studies. Vanadate reduced the amount of active surface asialoglycoprotein receptors approximately 70%, but had no effect on the rate of internalization and retroendocytosis of ligand. The amount of surface asialoglycoprotein receptors can be reduced by lowering the incubation temperature gradually from 37 to 15 degrees C (Weigel, P. H., and Oka, J. A. (1983) J. Biol. Chem. 258, 5089-5094); vanadate affected only the temperature--sensitive receptors. Vanadate inhibited degradation of 125I-TC-AOM 70-80%. Degradation was much more sensitive to vanadate than binding; half-maximal effects were seen at approximately 1 mM vanadate for binding and approximately 0.1 mM vanadate for degradation. By subcellular fractionation in sucrose and Nycodenz gradients, it was shown that vanadate completely prevented the transfer of 125I-TC-AOM from endosomes to lysosomes. Therefore, the inhibition of degradation by vanadate was indirect; in the presence of vanadate, ligand did not gain access to the lysosomes. The limited degradation in the presence of vanadate took place in a prelysosomal compartment. Vanadate did not affect cell viability and ATP content.  相似文献   

3.
Ammonia, which like other lysosomotropic amines inhibits protein degradation in isolated rat hepatocytes by 70–80%, was utilized as a diagnostic tool to distinguish between the relative effects of various proteinase inhibitors on the lysosomal and non-lysosomal pathways of intracellular protein degradation.Leupeptin was found to inhibit lysosomal protein degradation by 80–85%, and non-lysosomal degradation by about 15%. Antipain had a similar, but somewhat weaker effect. Pepstain, bestatin and aprotinin (Traysylol) produced minor inhibitory effects (possibly on both degradation, pathways), whereas bacitracin and soybean trypsin inhibitor wre ineffective.Chymostatin inhibited lysosomal protein degradation by about 45%, whereas the non-lysosomal pathway was inhibited by more than 50%. Chymostatin was unique among the inhibitors tested in causing such a pronounced effect on non-lysosomal protein degradation, and appeared to selectively inhibit the energy-dependent portion of this pathway.The effects of the various inhibitors were additive to the extent expected on the basis of their kwown actions on lysosomal and non-lysosomal protein degradation. Thus, a combination of methylamine, leupeptine and chymostatin inhibited overall protein degradation by about 90%, resulting in a substantial improvement of the cellular nitrogen balance.The degradation inhibitors caused a partial inhibition of protein synthesis, apparently mainly by shutting down the supply of amino acids from the lysosome. The inhibitory effects of leupeptin and antipain were completely reversed by amino acid addition, whereas some inhibition remained in the case of chymostatin and the lysosomotropic amines, possibly reflecting a certain nonspecific toxicity.  相似文献   

4.
1. The effect of colchicine (2.5 microM) on cardiac protein turnover was tested with foetal mouse hearts in organ culture. 2. Colchicine had no effect on protein synthesis, but inhibited total protein degradation by 12-18%. Lumicolchicine, which lacks colchicine's ability to disaggregate microtubules, but shares its non-specific effects, did not alter protein degradation. 3. The colchicine-induced inhibition of protein degradation was accompanied by significant changes in cardiac lysosomal enzyme activities and distribution. 4. Colchicine inhibited the degradation of organellar proteins, including mitochondrial cytochromes, more than that of cytosolic proteins. 5. Colchicine decreased the rate of myosin degradation and the rate of proteolysis of the total protein pool to a similar extent. Since the regulation of myosin degradation does not involve lysosomes, this suggests that colchicine affects non-lysosomal as well as lysosomal pathways. 6. Release of branched-chain amino acids from colchicine-treated hearts was disproportionately decreased, suggesting that colchicine increased their metabolism. 7. It is concluded that colchicine, via its actions on microtubules, exerts important inhibitory effects on cardiac proteolysis. Colchicine is especially inhibitory to the degradation of organellar proteins, including mitochondrial cytochromes. Its inhibitory effects may be mediated in part via lysosomal mechanisms, but non-lysosomal mechanisms are probably involved as well.  相似文献   

5.
Incubation of BHK-21 hamster fibroblasts in a serum- and amino acid-deficient medium caused a 3-fold increase in the degradation of endogenous protein, a doubling of the degradation of endocytosed epidermal growth factor, and an eightfold increase in the degradation of endocytosed alpha 2-macroglobulin. 3-Methyladenine (3MA) inhibited the deprivation-induced lysosomal degradation of both endogenous and endocytosed protein, but had no effect on basal (non-induced) degradation. 3MA also inhibited deprivation-induced protein degradation in human IMR-90 fibroblasts. Some inhibition of protein synthesis and of endocytic uptake of alpha 2-macroglobulin was observed in 3MA-treated BHK-21 cells, whereas cellular ATP levels were unaffected. These results are different from those obtained with isolated hepatocytes, and suggest that in some cells both endogenous and endocytic protein degradation may be accelerated as part of a general deprivation response.  相似文献   

6.
About 100 different purine derivatives and analogs were tested for their effect on protein synthesis and protein degradation in isolated rat hepatocytes. These included 6-aminopurines (adenine and adenosine analogs), 6-mercaptopurines, chloropurines, oxypurines, cytokinins, methylxanthines, methylindoles, benzimidazoles, and benzodiazepines. Most of the compounds were either inactive or inhibited protein synthesis as much as or more than they inhibited protein degradation. However, three methylated 6-aminopurines (3-methyladenine, 6-dimethylaminopurine riboside, and puromycin aminonucleoside) and four 6-mercaptopurines (6-methylmercaptopurine, 6-methylmercaptopurine riboside, 6-mercaptopurine riboside, and 2′,3′,5t-?triacetyl-6-mercaptopurine riboside) had a markedly stronger effect on protein degradation than on synthesis, and might therefore be potentially useful as selective degradation inhibitors. None of the seven above-mentioned purines had any significant effect on the degradation of the exogenous protein, asialofetuin, and would therefore seem to selectively inhibit endogenous protein degradation. Since the degradation was not further affected by purines in the presence of amino acids or lysosomotropic amines, it is suggested that the purines exert their effect specifically upon the autophagic/lysosomal pathway. All the mercaptopurines significantly depressed cellular ATP levels, whereas the methylated aminopurines did not. For this reason, the latter are probably more useful as degradation inhibitors. 3-Methyladenine had no effect on protein synthesis at a concentration (5 mm) which inhibited protein degradation by more than 60%, and may therefore be regarded as a highly specific inhibitor of autophagy.  相似文献   

7.
An electron microscopic, morphometric analysis of isolated rat hepatocytes revealed a 70% decrease in the early forms of autophagic vacuoles after administration of leucine. The lysosomal degradation of protein was reduced by only about 30% under the same conditions. These observations suggest that leucine is a major regulator of the bulk autophagy observable in the electron microscope, but that this type of autophagy contributes only about one-half of the total amount of protein degraded in lysosomes. Asparagine inhibited lysosomal protein degradation more strongly than did leucine, but had no significant effect on the amount of autophagic vacuoles. Leucine and asparagine would therefore seem to exert their effects on lysosomal protein degradation through different mechanisms.  相似文献   

8.
It has been reported that macrophages degrade infectious forms of prion protein (PrP(Sc) ). In order to investigate the mechanisms underlying PrP(Sc) degradation in macrophages, the effects of lysosomal and proteasomal inhibitors on macrophage cell lines which were incubated with scrapie-affected brain homogenate were studied. PrP(Sc) degradation was inhibited in the presence of both proteasomal and lysosomal inhibitors. Indirect fluorescence assays to determine the cellular localization of PrP(Sc) were undertaken. PrP(Sc) colocalized with the lysosomal membrane protein Lamp-1 and ubiquitin, a protein that is related to the proteasome. The present data indicate that macrophages might degrade PrP(Sc) via the lysosomal and proteasomal pathways.  相似文献   

9.
Analogues and derivatives of six of the amino acids which most effectively inhibit protein degradation in isolated rat hepatocytes (leucine, asparagine, glutamine, histidine, phenylalanine and tryptophan) were investigated to see if they could antagonize or mimic the effect of the parent compound. No antagonists were found. Amino alcohols and amino acid amides tended to inhibit protein degradation strongly, apparently by a direct lysosomotropic effect as indicated by their ability to cause lysosomal vacuolation. Amino acid alkyl esters and dipeptides inhibited degradation to approximately the same extent as did their parent amino acids, possibly by being converted to free amino acids intracellularly. Of several leucine analogues tested, four (L-norleucine, L-norvaline, D-norleucine and L-allo-isoleucine) were found to be as effective as leucine in inhibiting protein degradation. None of the analogues had any effect on protein synthesis. Since leucine appears to play a unique role as a regulator of bulk autophagy in hepatocytes, the availability of active leucine agonists may help tj elucidate the biochemical mechanism for control of this important process.  相似文献   

10.
The effect of inhibiting lysosomal protein degradation on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was determined using a mouse mammary cell line (TS-85) which expresses a temperature-sensitive mutation in the ubiquitin degradative pathway. Incubating cells for 18 hr in medium containing 20 mM NH4Cl did not alter total protein synthesis or cell growth, but it did inhibit the rate of total protein degradation by 19%, which is consistent with the known inhibitory effect of NH4Cl on lysosomal protein degradation. NH4Cl treatment also resulted in an increase (81% +/- 20) in HMG-CoA reductase activity. The increase in reductase activity was not correlated with changes in the phosphorylation state of the enzyme or with alteration in the relative rate of reductase synthesis. However, the basal degradation rate of the reductase was significantly inhibited, and after NH4Cl treatment, the half-life of the enzyme increased from 4.0 +/- 0.4 hr to 8.3 +/- 0.8 hr. The change in the rate of reductase degradation can account completely for the increase in reductase activity observed in NH4Cl-treated cells. The accelerated degradation of HMG-CoA reductase induced by 25-hydroxycholesterol treatment was not affected by either NH4Cl or by inactivation of the ubiquitin degradative pathway. Therefore, two different mechanisms may be responsible for the accelerated degradation and basal degradation of HMG-CoA reductase. The latter can be inhibited by NH4Cl and may imply that under basal conditions the enzyme may be degraded in lysosomes.  相似文献   

11.
Possible derivatives of the amino acids tryptophan, tyrosine and histidine were examined as to their effect on protein metabolism in isolated rat hepatocytes. One of the substances tested, kynurenine (a main product of the catabolism of tryptophan), might be a physiological regulator of the lysosomal degradation of endogenous protein, because of the following. (a) Kynurenine decreased the lysosomal (i.e. methylamine-sensitive) pathway of degradation to a much greater extent than its parent amino acid, without interfering with the non-lysosomal pathway. (b) Kynurenine did not appreciably reduce the (lysosomal) degradation of the endocytosed protein asialo-fetuin, or the rate of protein synthesis, indicating a specificity of action. (c) Electron micrographs revealed a reduction in secondary lysosomes due to kynurenine.  相似文献   

12.
Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic–lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0–3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic–lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic–lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic–lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic–lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.  相似文献   

13.
Sequestration of the inert cytosolic marker [14C]sucrose by sedimentable organelles was measured in isolated rat hepatocytes made transiently permeable to sucrose by means of electropermeabilization. Lysosomal integrity, protein degradation, autophagic sequestration, and other cellular functions were not significantly impaired by the electric treatment. Hepatocytes sequestered sucrose at an initial rate of approximately 10%/h, which is threefold higher than the estimated rate of autophagic-lysosomal protein degradation. Almost one-third would appear to represent mitochondrial fluid uptake; the rest was nearly completely and specifically inhibited by 3-methyladenine (3MA) and can be regarded as autophagic sequestration. A complete amino acid mixture was somewhat less inhibitory than 3MA, and partially antagonized the effect of the latter. This paradoxical effect, taken together with the high sequestration rate, may suggest heterogeneity as well as selectivity in autophagic sequestration. There was no detectable recycling of sequestered [14C]sucrose between organelles and cytosol. Studies of individual amino acids revealed histidine as the most effective sequestration inhibitor. Leucine may have a regulatory function, as indicated by its unique additive/synergistic effect, and a combination of Leu + His was as effective as the complete amino acid mixture. Asparagine inhibited sequestration only 20%, i.e., its very strong effect on overall (long-lived) protein degradation must partially be due to post-sequestrational inhibition. The lysosomal (amine-sensitive) degradation of short-lived protein was incompletely inhibited by 3MA, indicating a contribution from nonautophagic processes like crinophagy and endocytic membrane influx. The ability of an amino acid mixture to specifically antagonize the inhibition of short-lived protein degradation by AsN + GIN (but not by 3MA) may suggest complex amino acid interactions at the level of fusion between lysosomes and other vesicles in addition to the equally complex interactions at the level of autophagic sequestration.  相似文献   

14.
Three different carboxylic ionophores (monensin, nigericin and lasalocid) were each found capable of causing a relatively complete block of the lysosomal (i.e., methylamine-sensitive) protein degradation in isolated rat hepatocytes. Monensin was found to be the most specific in action, as it had no effect on non-lysosomal degradation and did not bring about any substantial inhibition of protein synthesis. Morphometric examination of electron micrographs revealed that monensin causes an accumulation of early forms of autophagic vacuoles and blocks the swelling of lysosomes seen in the presence of methylamine. The results indicate that monensin inhibits lysosomal protein degradation by affecting lysosomal pH.  相似文献   

15.
The beta-cell glibenclamide receptor is an ADP-binding protein.   总被引:2,自引:0,他引:2       下载免费PDF全文
Pathways of bulk protein degradation controlled by insulin and isoprenaline (isoproterenol) were distinguished in Langendorff-perfused rat hearts. Proteins were biosynthetically labelled in vitro with [3H]leucine, followed by addition of 2 mM non-radioactive leucine to competitively prevent reincorporation. Rapidly degraded proteins were eliminated during a 3 h preliminary perfusion period without insulin. One third of bulk myocardial protein degradation was inhibited by isoprenaline as described previously. An insulin concentration of 5 nM maximally inhibited proteolysis, beginning within 2 min. Inhibition reached 32% within 1.25 h and 35% after 1.5 h. The minimum effective insulin concentration was approx. 10-50 pM, which caused 10-20% inhibition. Following 3 h of perfusion without insulin, the lysosomal inhibitor, chloroquine (30 microM), inhibited 38% of bulk degradation. The 35% proteolytic inhibition caused by insulin was followed by very little further inhibition on subsequent concurrent infusion of chloroquine, i.e. the inhibitory effects of insulin and chloroquine were not additive. In contrast, prior inhibition of lysosomal proteolysis by insulin or chloroquine did not prevent the subsequent additive inhibition caused by isoprenaline. Insulin and beta-agonists additively inhibited approx. two-thirds of bulk degradation. The biguanide antihyperglycaemic agent phenformin (2 microM) inhibited 35% of bulk degradation, beginning at 2 min and reaching a near maximum at approx. 1.25-1.5 h. Following inhibition of proteolysis with phenformin (20 microM), subsequent infusion of chloroquine (30 microM) produced only a slight additional inhibition. Following inhibition of 35% of degradation by 1.5 h of perfusion with insulin (5 nM), subsequent exposure to phenformin (2 microM) produced only a slight additional inhibition which did not exceed 38% of basal proteolysis. Thus insulin and phenformin both inhibit lysosomal proteolysis; however, the adrenergic-responsive pathway is distinct.  相似文献   

16.
In the Langendorff isolated perfused rat heart, 36% of total basal protein degradation was inhibited by the lysosomal inhibitor chloroquine (30 microM), after elimination of rapid turnover proteins during a 3 h preliminary degradation period. Prior inhibition of degradation with chloroquine was additive to the 30% inhibition caused by simultaneous infusion of 50-200 nM-isoprenaline. This additivity suggests that the adrenergic-controlled process is independent of the lysosomal degradative pathway. After discontinuation of drug infusions, the isoprenaline-inhibited degradation rate returned to the previous baseline; however, the chloroquine-inhibited degradation rate transiently exceeded the previous baseline. NaN3 (0.3 mM) caused a decrease of left-ventricular myocardial ATP content of approx. 60% at 14 min and extreme impairment of contractile function; however, the total lysosomal and non-lysosomal protein degradation was not changed at this time. Conversely, left-ventricular tissue ATP content was not changed during proteolytic inhibition by 10 nM-isoprenaline or 10 microM-chloroquine at 14 min. The results indicate that depletion of myocardial energy stores in this preparation is neither necessary nor sufficient to cause inhibition of the total of lysosomal and non-lysosomal protein degradation.  相似文献   

17.
Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.  相似文献   

18.
Protein synthesis in isolated rat hepatocytes, as measured by the incorporation of [14C]-valine at constant specific radioactivity, proceeded at a rate of 0.3-0.5%/h in an unsupplemented medium, i.e. only about one-tenth the rate of protein degradation (4%/h). Leupeptin, which inhibits lysosomal protein degradation (previously found to be 75% of the total degradation in hepatocytes), had no effect on protein synthesis, showing that endogenous protein degradation supplied amino acids in excess of the substrate requirements for protein synthesis. The inhibition of protein synthesis by NH4Cl (another inhibitor of lysosomal protein degradation) as well as the stimulation by a physiological amino acid mixture must therefore represent indirect effects, either on general energy metabolism, or on unknown regulatory processes.  相似文献   

19.
We studied the role of protein kinase C (PKC) in the lysosomal processing of endocytosed proteins in isolated rat hepatocytes. We used [14C]sucrose-labeled horseradish peroxidase ([14C]S-HRP) to simultaneously evaluate endocytosis and lysosomal proteolysis. The PKC activator phorbol 12-myristate 13-acetate (PMA) inhibited the lysosomal degradation of [14C]S-HRP (1 microM PMA: 40% inhibition, P<.05), without affecting either the endocytic uptake or the delivery to lysosomes. However, PMA was not able to affect the lysosomal processing of the beta-galactosidase substrate dextran galactosyl umbelliferone. The PKC inhibitors, chelerytrine (Che), staurosporine (St) and G? 6976, prevented PMA inhibitory effect on lysosomal proteolysis. Nevertheless, purified PKC failed to alter proteolysis in [14C]S-HRP-loaded isolated lysosomes, suggesting that intracellular intermediates are required. PMA induced phosphorylation and hepatocyte membrane-to-lysosome redistribution of the myristoylated alanine-rich C kinase substrate (MARCKS) protein, raising the possibility that MARCKS mediates the PKC-induced inhibition of lysosomal proteolysis.  相似文献   

20.
Stimulation of resting normal rat kidney fibroblasts, prelabeled with [3H]leucine, by platelet-derived growth factor (PDGF) caused inhibition of cellular protein degradation and a parallel increased nuclear translocation of 3H-labeled nonhistone proteins (3H-NHP) and DNA synthesis. Nuclear translocation of these proteins was independent of protein synthesis. Fractionation of the nuclear 3H-NHP in a pH gradient of 2.5-6.5 showed that the protein fractions with a high degree of proteolysis in resting cells corresponded to the protein fractions with a high extent of translocation in stimulated cells, suggesting that degradation and translocation of these proteins may be related. PDGF inhibited cellular uptake of [3H]chloroquine, suggesting that PDGF inhibits NHP degradation via the lysosomal pathway. These observations support the hypothesis that PDGF induces NHP translocation to the nucleus by inhibiting lysosomal degradation of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号