首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Like every other adult stem cell in the human body, spermatogonial stem cells (SSCs) have the capacity to either renew themselves or to start the differentiation process, namely, spermatogenesis. Due to the continuation of the stem cell population in the testis, several possible options for preservation and re-establishment of the reproductive potential exist. Currently, spermatogonial stem cell transplantation (SSCT) is considered the most promising tool for fertility restoration in young cancer patients. This technique involves the injection of a testicular cell suspension from a fertile donor into the testis of an infertile recipient. Although, SSCT could prove important for fertility preservation, this technique is not without any risk. Testicular cell suspensions from cancer patients may be contaminated with cancerous cells. It is obvious that reintroduction of malignant cells into an otherwise cured patient must be omitted. Decontamination strategies to solve this problem are discussed. Another alternative to preserve male fertility could be in-vitro culture of SSCs. This approach may be applied to generate spermatozoa in-vitro from cultured spermatogonial stem cells, which, in turn, could be used for intracytoplasmic sperm injection. Xenogeneic transplantation and xenografting are two other hypothetical methods to preserve fertility. However, because of the ethical and biological concerns inherent to these approaches, xenogeneic transplantation and xenografting should be limited to research. When SSCT or SSC culture becomes available for clinical use, efficient protocols for the cryopreservation of SSCs and testicular tissue will be of great benefit. The search for an optimal freezing protocol is discussed. Apart from fertility preservation, SSC studies are useful for other applications as well, such as transgenerational gene therapy and cell-based organ regeneration therapy.  相似文献   

3.
Conventional culture for the detection, enumeration and identification of micro-organisms has been the traditional tool of the microbiologist. It is, however, time-consuming and labour-intensive and confirmed results often require several days of analysis. Culture may not grow the organisms being sought and for enumeration may only detect a small proportion of the total population. However, it does have the advantage of being simple to use and relatively inexpensive. It is also a direct means of assessing cell viability. Novel fluorogenic dyes and fluorgenic and chromogenic substrates have overcome some of these problems by providing a means of rapid and specific detection and enumeration whilst removing the need for subculture and confirmation tests. Immunological tests such as ELISA have significantly reduced analysis time by providing specific target organism detection. Molecular techniques have removed the need for culture. Improvements in sensitivity, and removal of the inhibitory nature of sample matrices, have allowed analysts to detect low levels of micro-organisms but the questions of viability and comparability with cultural techniques still remain. Are we about to see a change of culture in water quality assessment, or can cultural techniques be developed that reduce analysis time to a few hours and can rapid methods be used for detecting the presence and viability of organisms?  相似文献   

4.
The history of quantitative, computerized electroencephalogram (EEG) analysis is reviewed. It is shown that, until very recently, the basic approach to EEG analysis involved the assumption that the EEG is stochastic. Consequently, statistical pattern recognition techniques, segmentation procedures, syntactic methods, knowledge-based approaches, and even artificial neural network methods have been developed with different levels of success. A fundamentally different approach to computerized EEG analysis, however, is making its way into the laboratories. The basic idea, inspired by recent advances in the area of non-linear dynamics, and especially the theory of chaos, is to view an EEG as the output of a deterministic system of relatively simple complexity, but containing non-linearities. This suggests that studying the geometrical dynamics of EEGs, and the development of neurophysiologically realistic models of EEG generation may produce more successful automated EEG analysis techniques than the classical, stochastic methods. Evidence supporting the non-linear dynamics paradigm is reviewed, and possible research paths are indicated.  相似文献   

5.
Biotechnology Letters - It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of...  相似文献   

6.
7.
Purinergic Signalling - The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a...  相似文献   

8.
Despite strict regulation and a clean safety record, research and development of genetically modified (GM) crops and other organisms has been confronted with tremendous public hostility. Why has this happened, and how can scientists try to guide the debate into more rational channels? The answers may determine the future of GM technology and our ability to provide for a growing world population.  相似文献   

9.
10.
Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.  相似文献   

11.
12.
13.
The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT release from EC cells might be involved in the initiation of colonic peristalsis, following distension. However, because no direct evidence exists to support this hypothesis, the aim of this study was to determine directly whether release of 5-HT from EC cells was required for distension-evoked colonic peristalsis. Real-time amperometric recordings of 5-HT release and video imaging of colonic wall movements were performed on isolated segments of guinea pig distal colon, during distension-evoked peristalsis. Amperometric recordings revealed basal and transient release of 5-HT from EC cells before and during the initiation of peristalsis, respectively. However, removal of mucosa (and submucosal plexus) abolished 5-HT release but did not inhibit the initiation of peristalsis nor prevent the propagation of fecal pellets or intraluminal fluid. Maintained colonic distension by fecal pellets induced repetitive peristaltic waves, whose intrinsic frequency was also unaffected by removal of the submucosal plexus and mucosa, although their propagation velocities were slower. In conclusion, the mechanoreceptors and sensory neurons activated by radial distension to initiate peristalsis lie in the myenteric plexus and/or muscularis externa, and their activation does not require the submucosal plexus, release of 5-HT from EC cells, nor the presence of the mucosa. The propagation of peristalsis and propulsion of liquid or solid content along the colon is entrained by activity within the myenteric plexus and/or muscularis externa and does not require sensory feedback from the mucosa, nor neural inputs arising from submucosal ganglia.  相似文献   

14.
15.
The study of stem cells in cnidarians has a history spanning hundreds of years, but it has primarily focused on the hydrozoan genus Hydra. While Hydra has a number of self-renewing cell types that act much like stem cells—in particular the interstitial cell line—finding cellular homologues outside of the Hydrozoa has been complicated by the morphological simplicity of stem cells and inconclusive gene expression data. In non-hydrozoan cnidarians, an enigmatic cell type known as the amoebocyte might play a similar role to interstitial cells, but there is little evidence that I-cells and amoebocytes are homologous. Instead, self-renewal and transdifferentiation of epithelial cells was probably more important to ancestral cnidarian development than any undifferentiated cell lineage, and only later in evolution did one or more cell types come under the regulation of a “stem” cell line. Ultimately, this hypothesis and competing ones will need to be tested by expanding genetic and developmental studies on a variety of cnidarian model systems.  相似文献   

16.
17.
18.
19.
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective protein processing that leads to changes in function and regulation of this chloride channel. Despite of the expression of CFTR in the kidney, patients with CF do not present major renal dysfunction, but it is known that both the urinary excretion of proteins and renal capacity to concentrate and dilute urine are altered in these patients. CFTR mRNA is expressed in all nephron segments of rat and human, and this abundance is more prominent in renal cortex and outer medulla renal areas. CFTR protein was detected in apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. Studies have demonstrated that CFTR does not only transport Cl but also ATP. ATP transport by CFTR could be involved in the control of other ion transporters such as Na+ (ENaC) and K+ (renal outer medullary potassium) channels, especially in TAL and CCD. In the kidney, CFTR also might be involved in the endocytosis of low-molecular-weight proteins by proximal tubules. This review is focused on the CFTR function and structure, its role in the renal physiology, and its modulation by hormones involved in the control of extracellular fluid volume.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号