首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
E3泛素连接酶在植物抵御高盐及干旱等非生物胁迫过程中发挥重要作用。本研究克隆获得大豆E3泛素连接酶基因GmAIRP1,该基因cDNA全长为642 bp,编码213个氨基酸。蛋白结构域分析表明,GmAIRP1具有典型的RING-finger结构域。系统进化树分析表明,GmAIRP1与蒺藜苜蓿MtAIRP1同源性最高,亲缘关系最近。表达分析显示,GmAIRP1可被高盐、干旱和ABA诱导表达,并在胁迫1 h或3 h时表达量达到最大。抗逆表型分析表明,GmAIRP1转基因烟草在高盐和干旱胁迫21 d后,生长状态优于野生型,提高了植株对高盐和干旱胁迫的耐受性。生理指标测定结果显示,在高盐和干旱胁迫下,GmAIRP1转基因烟草的POD和CAT活性提高,整体高于对照,MDA含量始终低于对照。以上研究结果表明,Gm AIRP1能够通过激活抗氧化酶活性、提高渗透调节物质的积累来增强植物抵御高盐和干旱胁迫的能力,在植物响应高盐和干旱胁迫中发挥正调控作用。  相似文献   

2.
钙依赖性蛋白激酶(CDPKs)是一类重要的钙信号感受蛋白和响应蛋白,在植物干旱、低温、盐碱等非生物胁迫应答中起着重要的调控作用。为探讨陆地棉GhCDPK1基因在干旱胁迫下所起的作用,该研究利用实时荧光定量PCR技术分析了PEG模拟干旱胁迫下该基因的表达量,发现GhCDPK1基因受干旱胁迫诱导。通过构建植物表达载体pCAMBIA2300-GhCDPK1,采用农杆菌介导的叶盘法转化模式植物烟草,发现干旱胁迫下转基因植株保水能力明显高于野生型植株,叶绿素、脯氨酸、可溶性蛋白含量及POD、SOD活性也高于野生型植株,而丙二醛含量低于野生型植株。研究结果表明,GhCDPK1基因作为正向调控因子响应干旱胁迫诱导,过表达GhCDPK1基因可以使植株积累更多的渗透调节物质、增强抗氧化系统酶的活性和维持细胞膜的稳定性来提高植物抵御外界干旱胁迫的能力。  相似文献   

3.
近年来,一些研究发现氢气作为一种新的信号分子参与植物抗胁迫网络并具有重要作用。本文综述了近年来氢气参与植物胁迫应答的研究,总结氢气主要通过调节活性氧(ROS)来参与植物抵御胁迫的过程。在植物抗干旱过程中,氢气通过促进ROS的产生来调节气孔的闭合;而在植物抗盐渍、金属离子和农药损伤过程中,氢气通过去除ROS来修复氧化损伤;氢气还对植物抗病虫害相关基因的表达有调节作用。  相似文献   

4.
遭遇极端温度、干旱、高盐等胁迫时,植物需要调控多种基因,通过多种途径来抵御非生物胁迫的伤害。综述了植物在干旱胁迫发生时,信号传导和转录因子相关调控基因以及在水分运输、抗脱水、渗透调节以调节气孔开关等功能相关基因克隆的研究进展,并提出了今后开展植物抗逆研究的建议。  相似文献   

5.
三个耐旱树种木质部栓塞化的脆弱性及其恢复能力   总被引:14,自引:2,他引:12  
植物在长期适应赖以生存的自然环境中 ,形成了一套最适宜自身生长发育的生理生态行为 ,采取各种方式来抵御或忍耐水分胁迫的影响。如通过具有深广而茂密的根系格局来保持水分吸收 ,通过气孔调节、角质层障碍作用和小的叶蒸发表面来减少水分散失 ,通过渗透调节和增加组织弹性来保持膨压 ,通过增强原生质耐脱水能力来免受伤害或少受伤害等等。植物遭受干旱危害时 ,首先出现表型反应的多是植物的叶片 ,因此 ,研究植物的耐旱机理多从叶入手 ,对根系类型、分布及根茎比在植物耐旱性方面也有不少报道[1,2 ],而对木质部在干旱适应性反应方面的研究…  相似文献   

6.
木本植物抗旱机理研究进展   总被引:11,自引:3,他引:8  
干旱是主要的环境胁迫因子之一,严重影响植物的分布与生长发育。研究和探索旱生植物的抗旱机理已成为众多研究者关注的焦点。本文综述了部分抗旱木本植物根、茎、叶等与干旱环境相适应的结构特征,分析了干旱胁迫下,植物自身的渗透调节、抗氧化酶系统、内源激素变化、抗旱蛋白对干旱胁迫的响应机理,并概述了抗旱相关基因的研究进展。  相似文献   

7.
干旱、盐、温度对植物体NADP-苹果酸酶的影响与机理   总被引:2,自引:0,他引:2  
刘增辉  邵宏波  初立业  张正斌 《生态学报》2010,30(12):3334-3339
NADP-苹果酸酶是植物体代谢的重要酶之一,参与了多个代谢过程,在植物体内广泛存在,与各种环境胁迫关系密切。目前,胁迫条件下的植物体NADP-苹果酸酶基因的表达情况以及酶活性的变化是关注的重点,同时,NADP-苹果酸酶在抗胁迫方面的机理研究也在逐渐的展开。综述了干旱、盐、高温和低温胁迫条件下NADP-苹果酸酶活性及该酶基因表达变化的特点,揭示了其在对植物体抵御各种胁迫带来的危害时所发挥的作用以及作用机理。  相似文献   

8.
陈霞  杨鹏军  张旭强  杨宁 《广西植物》2016,36(12):1498-1504
该研究以转高山离子芥的CbPLDα、CbPLDβ基因烟草为材料,研究了渗透调节物质和保护酶系对PEG6000溶液模拟干旱胁迫的响应机制.结果表明:渗透调节物质脯氨酸、可溶性糖、可溶性蛋白分别以各自不同的响应方式在干旱胁迫下增强转基因烟草的抗旱性,且在所有浓度PEG6000模拟的干旱胁迫下,转基因烟草的脯氨酸、可溶性糖、可溶性蛋白的含量始终显著高于野生型烟草(P<0.05).说明干旱胁迫下两种转基因烟草的渗透调节能力要强于野生型烟草.保护酶系中,超氧化物歧化酶(SOD)和过氧化物酶(POD)在减轻干旱胁迫下转基因烟草膜脂过氧化伤害中起到协同互补作用,而过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)在干旱胁迫下转基因烟草清除过氧化氢机制中发挥主要作用,说明保护酶系在抵制干旱胁迫和保护转基因烟草免受干旱伤害方面具有重要的生物学功能,这从生理角度揭示了高山离子芥CbPLDα、CbPLDβ响应干旱的生理生态机理.综上,高山离子芥CbPLDα、CbPLDβ基因参与了干旱胁迫下烟草的膜稳定性调节、渗透调节物质的积累和抗氧化酶系的调控.该研究结果为提高植物抗旱性研究及应用提供了新的基因资源,对于加强PLD功能研究、补充植物抗干旱理论及抗低温干旱育种种质资源的开发利用具有重要意义.  相似文献   

9.
水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响   总被引:15,自引:3,他引:12  
采用PVC管种植模拟土壤干旱的方法,研究了牛心朴子(Cymanchum komarovii)在水分胁迫下植株生长及渗透调节物质的积累情况。结果表明:牛心朴子植株地上部对土壤水分比较敏感,随水分胁迫程度的加强和胁迫时间的延长,植株生长显著变缓,直至停止生长,而根/冠比值则有所加大;可溶性糖是牛心朴子根系主要的渗透调节物质,随着土壤水分胁迫程度的加重,根系中的可溶性糖呈明显的增加趋势,叶中的可溶性糖则随胁迫的加重而呈下降趋势,说明在干旱胁迫下牛心朴子的同化产物大部分分配于根系之中;Pro在牛心朴子叶、茎、根的渗透调节中也起着重要作用,随土壤水分胁迫的加重,其在根、茎、叶中的积累明显增加;而无机离子在牛心朴子渗透调节过程中的作用很小。  相似文献   

10.
褪黑素最初是在动物中发现的一种吲哚类小分子,具有昼夜节律调节、清除自由基等多种生理功能,还具有改善睡眠的保健作用。后来在植物中也检测到了褪黑素,这表明植物也能合成褪黑素。随着对植物褪黑素的深入研究,发现褪黑素在调控植物生长发育、耐受干旱、高温、低温、高盐、重金属等非生物胁迫、抵御细菌和真菌病害方面具有重要作用。从植物褪黑素合成途径、生长发育调控和胁迫应答反应方面的研究进展进行了综述,以期为植物褪黑素研究提供参考。  相似文献   

11.
Containment of transgenes inserted into genetically engineered forest trees will probably be necessary before most commercial uses are possible. This is a consequence of (1) high rates of gene dispersal by pollen and seed, (2) proximity of engineered trees in plantations to natural or feral stands of interfertile species, and (3) potentially undesirable ecological effects if certain transgenes become widely dispersed. In addition to gene containment, engineering of complete or male sterility may stimulate faster wood production, reduce production of allergenic pollen, and facilitate hybrid breeding. We review the regulatory and ecological rationale for engineering sterility, potentially useful floral genes, strategies for creating sterility-causing transgenes, and problems peculiar to engineering sterility in forest trees. Each of the two primary options — ablating floral tissuesvia floral promoter-cytotoxin fusions, and disrupting expression of essential floral genes by various methods of gene suppression — has advantages and disadvantages. Because promoters from structural and enzymatic floral-specific genes often work well in heterologous species, ablation methods based on these genes probably will not require cloning of homologs from angiosperm trees. Methods that inhibit gene expression will require cloning of tree genes and may be more prone to epigenetic variability, but should allow assay of transgene efficacy in seedlings. Practical constraints include the requirement for vegetative propagation if complete sterility is engineered and the need for highly stable forms of sterility in long-lived trees. The latter may require suppression of more than one floral gene or employment of more than one genetic mechanism for sterility.  相似文献   

12.
植物抗旱基因及其在草坪草中的应用   总被引:1,自引:0,他引:1  
从植物抗旱的生物学原理、渗透调节物质、清除活性氧、保护生物大分子及其膜结构的蛋白质、转录因子及其他酶类的基因工程等方面综述了目前抗旱基因研究的进展以及存在的一些问题。  相似文献   

13.
Genetic engineering of trees to improve productivity, wood quality, and resistance to biotic and abiotic stresses has been the primary goal of the forest biotechnology community for decades. We review the extensive progress in these areas and their current status with respect to commercial applications. Examples include novel methods for lignin modification, solutions for long-standing problems related to pathogen resistance, modifications to flowering onset and fertility, and drought and freeze tolerance. There have been numerous successful greenhouse and field demonstrations of genetically engineered trees, but commercial application has been severely limited by social and technical considerations. Key social factors are costly and uncertain regulatory hurdles and sweeping market barriers in the form of forest certification systems that disallow genetically modified trees. These factors limit and, in many cases, preclude field research and commercial adoption. Another challenge is the high cost and uncertainty in transformation efficiency that is needed to apply genetic engineering and gene editing methods to most species and genotypes of commercial importance. Recent advances in developmental gene-based transformation systems and gene editing, if combined with regulatory and certification system reform, could provide the foundation for genetic engineering to become a significant tool for coping with the increasing environmental and biological stresses on planted and wild forests.  相似文献   

14.
Trees are an integral part of human life, and a vital component of biodiversity. Forest trees in particular are renewable sources of food, fodder, fuel wood, timber and other valuable non-timber products. Due to the rapid growth of population and the human desire to progress, there has been a tremendous reduction in forest cover from the earths surface. To maintain and sustain forest vegetation, conventional approaches have been exploited in the past for propagation and improvement. However, such efforts are confronted with several inherent bottlenecks. Biotechnological interventions for in vitro regeneration, mass micropropagation and gene transfer methods in forest tree species have been practised with success, especially in the last decade. Against the background of the limitations of long juvenile phases and life span, development of plant regeneration protocols and genetic engineering of tree species are gaining importance. Genetic engineering assumes additional significance, because of the possibility of introducing a desired gene in a single step for precision breeding of forest trees. There are no comprehensive and detailed reviews available combining research developments with major emphases on tissue culture and basic genetic transformation in tree species. The present communication attempts to overview the progress in tissue culture, genetic transformation and biotechnological applications in the last decade and future implications.  相似文献   

15.
Forest tree biotechnology   总被引:12,自引:0,他引:12  
The past year has seen the fruits of biotechnological manipulation of forest trees approach commercial application. Advances in somatic embryogenesis have brought mass clonal propagation of the top commercial trees closer to reality, and efficient gene transfer systems have been developed for a number of conifers and hardwoods. Radical alterations in the quantity and quality of lignin in wood have been shown to be possible in softwoods and hardwoods through identification of naturally occurring mutants, as well as by engineering the lignin biosynthetic pathway with transgenes. The potential environmental and social impacts of the release of transgenic trees have become an increasingly contentious issue that will require more attention if we are to use these technologies to their full advantage.  相似文献   

16.
The effects of arbuscular mycorrhizal fungi alkaline phosphatase (ALP) activities on the drought-resistance of Hippophae rhamnoides under water stress have been studied using histochemical techniques. The result shows in the mycorrhizae that total hyphae and functional hyphae form the base for the active hyphae, and amounts follow the order total hyphae>functional hyphae>active hyphae. Active hyphae play an important role in the biomass accumulation of the hosts; the hyphae with phosphatase activity (ALP) have a positive and strong effect on H. rhamnoides growth and its drought-resistance, and the rise of ALP is related to an increase in the fresh weight of the host trees, and a reduction of wilting. The direct participation of ALP in the P nutrient exchange host trees can improve the nutrient and water conditions, and raise their drought-resistance. Received: 17 August 1998 / Accepted: 18 March 1999  相似文献   

17.
Fate of transgenes in the forest tree genome   总被引:1,自引:0,他引:1  
During the last two decades, genetic engineering (GE) has been progressing at a steady pace in the forest trees. Transgenic trees carrying a variety of different transgenes have been produced, and are undergoing confined field trials in the world. However, there are questions regarding stability of transgene expression, and transgene escape that need to be addressed in the long-lived forest trees. Although relatively stable transgene expression has been reported for several target traits, including herbicide resistance, insect resistance, and lignin reduction in the vegetative propagules of several forest tree species, there were still unintended unstable events in transgenic plants. Long-term stability of transgene expression involved in these traits and others affecting yield (impacting growth) would be desirable in the vegetative propagules, and also in the generative progeny of the forest trees. Transgene escape through pollen, seed, and vegetative propagules from GE trees to native forest populations, although inevitable, remains an important regulatory issue. However, it may be possible to manage/minimize the risk of transgene spread via isolation in confined areas, and use of incompatible genotypes of feral tree populations in the vicinity of transgenic forest trees. Therefore, it is desirable to produce genetically stable transgenic trees, and have biocontainment measures in place for testing and deployment of the GE forest trees. Toward these goals (transgene stability and containment), innovative biotech strategies are being actively pursued, with reasonable success, in forest trees.  相似文献   

18.
林木基因克隆研究进展   总被引:1,自引:0,他引:1  
林木种质资源丰富, 种质间遗传差异大, 控制林木重要性状的基因克隆及转化对培育优良林木新品种具有很强的实用价值, 但许多具有潜在应用价值的林木基因未得到充分发掘和有效分离。近年来, 随着各种不同林木cDNA文库的建立, 大规模随机EST测序技术的运用以及克隆技术的不断完善, 特别是毛果杨(Populus trichocarpa)基因组测序计划的完成, 大量与林木重要性状相关的基因被分离和鉴定。这些重要基因的获得为利用转基因技术培育高产、优质、抗逆、抗病虫害的林木新品种奠定了一定的基础。该文综述了20多年来国内外林木基因克隆的研究进展, 对基因克隆及其应用过程中亟待解决的问题进行了讨论, 并对其发展趋势进行展望。  相似文献   

19.
Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.  相似文献   

20.
Forests are vital to the world's ecological, social, cultural and economic well‐being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial‐scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter‐lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号