首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin A2 (p36) is a highly alpha-helical molecule that consists of two opposing sides, a convex side that contains the phospholipid-binding sites and a concave side, which faces the extracellular milieu and contains multiple ligand-binding sites. The amino-terminal region of annexin A2 extends along the concave side of the protein and contains the binding site for the S100A10 (p11) subunit. The interaction of these subunits results in the formation of the heterotetrameric form of the protein, annexin A2-S100A10 heterotetramer (AIIt). To simulate the orientation of AIIt on the plasma membrane we bound AIIt to a phospholipid bilayer that was immobilized on a BIAcore biosensor chip. Surface plasmon resonance was used to observe in real time the molecular interactions between phospholipid-associated AIIt or its annexin A2 subunit and the ligands, tissue-type plasminogen activator (t-PA), plasminogen, and plasmin. AIIt bound t-PA (Kd = 0.68 microm), plasminogen (Kd = 0.11 microm), and plasmin (Kd = 75 nm) with moderate affinity. Contrary to previous reports, the phospholipid-associated annexin A2 subunit failed to bind t-PA or plasminogen but bound plasmin (Kd = 0.78 microm). The S100A10 subunit bound t-PA (Kd = 0.45 microm), plasminogen (Kd = 1.81 microm), and plasmin (Kd = 0.36 microm). Removal of the carboxyl-terminal lysines from the S100A10 subunit attenuated t-PA and plasminogen binding to AIIt. These results show that the carboxyl-terminal lysines of S100A10 form t-PA and plasminogen-binding sites. In contrast, annexin A2 and S100A10 contain distinct binding sites for plasmin.  相似文献   

2.
In a previous report we showed that plasmin-dependent lysis of a fibrin polymer, produced from purified components, was totally blocked if annexin II heterotetramer (AIIt) was present during fibrin polymer formation. Here, we show that AIIt inhibits fibrin clot lysis by stimulation of plasmin autodegradation, which results in a loss of plasmin activity. Furthermore, the C-terminal lysine residues of its p11 subunit play an essential role in the inhibition of fibrin clot lysis by AIIt. We also found that AIIt binds to fibrin with a K(d) of 436 nm and a stoichiometry of about 0.28 mol of AIIt/mol of fibrin monomer. The binding of AIIt to fibrin was not dependent on the C-terminal lysines of the p11 subunit. Furthermore, in the presence of plasminogen, the binding of AIIt to fibrin was increased to about 1.3 mol of AIIt/mol of fibrin monomer, suggesting that AIIt and plasminogen do not compete for identical sites on fibrin. Immunohistochemical identification of p36 and p11 subunits of AIIt in a pathological clot provides important evidence for its role as a physiological fibrinolytic regulator. These results suggest that AIIt may play a key role in the regulation of plasmin activity on the fibrin clot surface.  相似文献   

3.
The binding of plasminogen activators and plasminogen to the cell surface results in the rapid generation of the serine protease plasmin. Plasmin is further degraded by an autoproteolytic reaction, resulting in the release of an angiostatin, A61 (Lys78-Lys468). Previously, we demonstrated that the annexin A2-S100A10 heterotetramer (AIIt) stimulates the release of A61 from plasmin by promoting the autoproteolytic cleavage of the Lys468-Gly469 bond and reduction of the plasmin Cys462-Cys541 disulfide (Kwon, M., Caplan, J. F., Filipenko, N. R., Choi, K. S., Fitzpatrick, S. L., Zhang, L., and Waisman, D. M. (2002) J. Biol. Chem. 277, 10903-10911). Mechanistically, it was unclear if AIIt promoted a conformational change in plasmin, resulting in contortion of the plasmin disulfide, or directly reduced the plasmin disulfide. In the present study, we show that AIIt thiols are oxidized during the reduction of plasmin disulfides, establishing that AIIt directly participates in the reduction reaction. Incubation of HT1080 cells with plasminogen resulted in the rapid loss of thiol-specific labeling of AIIt by 3-(N-maleimidopropionyl)biocytin. The plasminogen-dependent oxidation of AIIt could be attenuated by thioredoxin. Thioredoxin reductase catalyzed the transfer of electrons from NADPH to the oxidized thioredoxin, thus completing the flow of electrons from NADPH to AIIt. Therefore, we identify AIIt as a substrate of the thioredoxin system and propose a new model for the role of AIIt in the redox-dependent processing of plasminogen and generation of an angiostatin at the cell surface.  相似文献   

4.
The Ca(2+)-dependent phospholipid-binding protein annexin II heterotetramer (AIIt) is composed of two copies of annexin II and a p11 dimer. The interaction of the carboxyl-terminal lysine residues of the p11 subunit of AIIt with the lysine-binding kringle domains of plasminogen is believed to play a key role in plasminogen binding and stimulation of the tPA-catalyzed cleavage of plasminogen to plasmin. In the current report, we show that AIIt-stimulated plasminogen activation is regulated by basic carboxypeptidases, in vitro. The incubation of AIIt with a 1/400 molar ratio of carboxypeptidase B for periods as short as 2 min resulted in a significant loss in AIIt-stimulated plasminogen activation. Carboxypeptidase B (CpB) as well as thrombin-activated fibrinolysis inhibitor (TAFIa) and carboxypeptidase N (CpN) rapidly reduced AIIt-stimulated plasminogen activation by 80%. The molar ratio of carboxypeptidase/AIIt for half-maximal inhibition of AIIt was 1/4700, 1/700, and 1/500 for CpB, TAFIa, and CpN, respectively. Treatment of AIIt with carboxypeptidase resulted in loss of both carboxyl-terminal lysine residues from the p11 subunit, which correlated with a decrease in the k(cat) and an increase in the K(m) for plasminogen activation. The data reveal a novel mechanism for the regulation of AIIt-stimulated plasminogen activation.  相似文献   

5.
Annexin II tetramer (AIIt) is a major Ca(2+)-binding protein of the endothelial cell surface which has been shown to stimulate the tissue plasminogen activator (t-PA)-dependent conversion of plasminogen to plasmin. In the present report, we have examined the regulation of plasmin activity by AIIt. The incubation of plasmin with AIIt resulted in a 95% loss in plasmin activity. SDS-PAGE analysis established that AIIt stimulated the autoproteolytic digestion of plasmin heavy and light chains. The kinetics of AIIt-stimulated plasmin autoproteolysis were first-order, suggesting that binding of plasmin to AIIt resulted in the spontaneous autoproteolysis of the bound plasmin. AIIt did not affect the activity of other serine proteases such as t-PA or urokinase-type plasminogen activator. Furthermore, other annexins such as annexin I, II, V, or VI did not stimulate plasmin autoproteolysis. Increasing the concentration of AIIt on the surface of human 293 epithelial cells increased cell-mediated plasmin autoproteolysis. Thus, in addition to stimulating the formation of plasmin, AIIt also promotes plasmin inactivation. These results therefore suggest that AIIt may function to provide the cell surface with a transient pulse of plasmin activity.  相似文献   

6.
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.  相似文献   

7.
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. The plasminogen/plasmin system includes the uPA, its receptor, and its inhibitor (plasminogen activator inhibitor-1). Interactions between these molecules regulate cellular proteolysis as well as adhesion, cellular proliferation, and migration, processes germane to the pathogenesis of lung injury and neoplasia. In previous studies, we found that uPA regulates cell surface fibrinolysis by regulating its own expression as well as that of the uPA receptor and plasminogen activator inhibitor-1. In this study, we found that uPA alters expression of the tumor suppressor protein p53 in Beas2B airway epithelial cells in both a time- and concentration-dependent manner. These effects do not require uPA catalytic activity because the amino-terminal fragment of uPA lacking catalytic activity was as potent as two chain active uPA. Single chain uPA also enhanced p53 expression to the same extent as intact two chain active uPA and the amino-terminal fragment. Pretreatment of cells with anti-beta1 integrin antibody blocked uPA-induced p53 expression. uPA-induced p53 expression occurs without increased p53 mRNA expression. However, uPA induced oncoprotein MDM2 in a concentration-dependent manner. uPA-induced p53 expression does not require activation of tyrosine kinases. Inactivation of protein-tyrosine phosphatase SHP-2 inhibits both basal and uPA-induced p53 expression. Plasmin did not alter uPA-mediated p53 expression. The induction of p53 expression by exposure of lung epithelial cells to uPA is a newly recognized pathway by which urokinase may influence the proliferation of lung epithelial cells. This pathway could regulate pathophysiologic alterations of p53 expression in the setting of lung inflammation or neoplasia.  相似文献   

8.
Plasmin, a broad spectrum proteinase, is inactivated by an autoproteolytic reaction that results in the destruction of the heavy and light chains of the protein. Recently we demonstrated that a 61-kDa plasmin fragment was one of the major products of this autoproteolytic reaction (Fitzpatrick, S. L., Kassam, G., Choi, K. S., Kang, H. M., Fogg, D. K., and Waisman, D. M. (2000)Biochemistry 39, 1021-1028). In the present communication we have identified the 61-kDa plasmin fragment as a novel four kringle-containing protein consisting of the amino acid sequence Lys(78)-Lys(468). To avoid confusion with the plasmin(ogen) fragment, angiostatin(R) (Lys(78)-Ala(440)), we have named this protein A(61). Unlike angiostatin, A(61) was produced in vitro from plasmin autodigestion in the absence of sulfhydryl donors. A(61) bound to lysine-Sepharose and also underwent a large increase in fluorescence yield upon binding of the lysine analogue, trans-4-aminomethylcyclohexanecarboxylic acid. Circular dichroism suggested that A(61) was composed of 21% beta-strand, 14% beta-turn, 18% 3(1)-helix and 8% 3(10)-helix. A(61) was an anti-angiogenic protein as indicated by the inhibition of bovine capillary endothelial cell proliferation. Plasminogen was converted to A(61) by HT1080 cells and bovine capillary endothelial cells. Furthermore, a plasminogen fragment similar to A(61) was present in the serum of humans as well as normal and tumor-bearing mice. These results establish that plasmin turnover can generate anti-angiogenic plasmin fragments in a nonpathological setting.  相似文献   

9.
Annexin II heterotetramer (AIIt) is a multifunctional Ca(2+)-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains the binding sites for anionic phospholipids, heparin, and F-actin, whereas the p11 subunit provides a regulatory function. The F-actin-binding site is presently unknown. In the present study we have utilized site-directed mutagenesis to create annexin II mutants with truncations in the C terminus of the molecule. Interestingly, a mutant annexin II lacking its C-terminal 16, 13, or 9 amino acids was unable to bind to F-actin but still retained its ability to interact with both anionic phospholipids and heparin. Recombinant AIIt, composed of wild-type p11 subunits and the mutant annexin II subunits, was also unable to bundle F-actin. This loss of F-actin bundling activity was directly attributable to the inability of mutant AIIt to bind F-actin. These results establish for the first time that the annexin II C-terminal amino acid residues, LLYLCGGDD, participate in F-actin binding.  相似文献   

10.
We have recently shown that Neovastat, an antiangiogenic extract from shark cartilage, stimulates the in vitro activation of plasminogen by facilitating the tissue-type plasminogen activator (tPA)-dependent conversion of plasminogen to plasmin. In this report, we describe the purification and characterization of the stimulatory molecules. Neovastat was subjected to a three-step purification procedure including gel filtration, preparative isoelectric focusing, and preparative SDS-PAGE. Two 28-kDa proteins with pIs of approximately 4.5 and 6.5 were purified to apparent homogeneity and identified as immunoglobulin (Ig) kappa light chains by N-terminal microsequencing. Ig light chains do not directly stimulate the activity of tPA or plasmin, suggesting a mechanism of action involving an interaction with plasminogen. Kinetic analysis showed that both Ig light chains accelerate the in vitro tPA-dependent conversion of plasminogen in plasmin by increasing the affinity of tPA for plasminogen by 32- and 38-fold (Km decrease from 456 nM to 12-14 nM). Shark Ig light chains also stimulated the degradation of fibrin by the tPA/plasminogen system in an in vitro assay. A direct interaction between Ig light chains and plasminogen (KA=4.0-5.5 x 10(7) M(-1); KD=18-25 nM) and with tPA (KA=2.8 x 10(7) M(-1); KD=36 nM) was demonstrated using real time binding measured by surface plasmon resonance. Ig light chain is the first molecule associated with the antiangiogenic activity of Neovastat to be purified and identified.  相似文献   

11.
The annexin A2-S100A10 heterotetramer (AIIt) is a multifunctional Ca(2+)-dependent, phospholipid-binding, and F-actin-binding phosphoprotein composed of two annexin A2 subunits and two S100A10 subunits. It was reported previously that oxidative stress from exogenous hydrogen peroxide or generated in response to tumor necrosis factor-alpha results in the glutathionylation of Cys(8) of annexin A2. In this study, we demonstrate that AIIt is an oxidatively labile protein whose level of activity is regulated by the redox status of its sulfhydryl groups. Oxidation of AIIt by diamide resulted in a time- and concentration-dependent loss of the ability of AIIt to interact with phospholipid liposomes and F-actin. The inhibitory effect of diamide on the activity of AIIt was partially reversed by dithiothreitol. In addition, incubation of AIIt with diamide and GSH resulted in the glutathionylation of AIIt in vitro. Mass spectrometry established the incorporation of 2 mol of GSH/mol of annexin A2 subunit at Cys(8) and Cys(132). Glutathionylation potentiated the inhibitory effects of diamide on the activity of AIIt. Furthermore, AIIt could be deglutathionylated by glutaredoxin (thiol transferase). Thus, we show for the first time that AIIt can undergo functional reactivation by glutaredoxin, therefore establishing that AIIt is regulated by reversible glutathionylation.  相似文献   

12.
Fucoidan, a sulfated fucopolysaccharide, mimics the fucosylated glycans of glycoproteins and has therefore been used as a probe for investigating the role of membrane polysaccharides in cell-cell adhesion. In the present report we have characterized the interaction of fucoidan with the Ca(2+)- and phospholipid-binding protein annexin II tetramer (AIIt). AIIt bound to fucoidan with an apparent K(d) of 1.24 +/- 0.69 nM (mean +/- SD, n = 3) with a stoichiometry of 0.010 +/- 0.001 mol of fucoidan/mol of AIIt (mean +/- SD, n = 3). The binding of fucoidan to AIIt was Ca(2+)-independent. Furthermore, in the presence but not the absence of Ca(2+), the binding of fucoidan to AIIt caused a decrease in the alpha-helical content from 32% to 7%. A peptide corresponding to a region of the p36 subunit of AIIt, F(306)-S(313), which contains a Cardin-Weintraub consensus sequence for heparin binding, was shown to undergo a conformational change upon fucoidan binding. This suggests that heparin and fucoidan bound to this region of AIIt. The binding of fucoidan but not heparin by AIIt also inhibited the ability of AIIt to bind to and aggregate phospholipid liposomes. These results suggest that the binding of AIIt to the carbohydrate conjugates of certain membrane glycoproteins may have profound effects on the structure and biological activity of AIIt.  相似文献   

13.
Chronic inflammatory diseases are associated with connective tissue turnover that involves a series of proteases, which include the plasminogen activation system and the family of matrix metalloproteinases (MMPs). Urokinase-type plasminogen activator (uPA) and plasmin, in addition to their role in fibrinolysis and activation of pro-MMPs, have been shown to transduce intracellular signals through specific receptors. The potential for uPA and plasmin to also contribute to connective tissue turnover by directly regulating MMP production was examined in human monocytes. Both catalytically active high m.w. uPA, which binds to the uPAR, and low m.w. uPA, which does not, significantly enhanced MMP-1 synthesis by activated human monocytes. In contrast, the N-terminal fragment of uPA, which binds to uPAR, but lacks the catalytic site, failed to induce MMP-1 production, indicating that uPA-stimulated MMP-1 synthesis was plasmin dependent. Endogenous plasmin generated by the action of uPA or exogenous plasmin increased MMP-1 synthesis by signaling through annexin A2, as demonstrated by inhibition of MMP-1 production with Abs against annexin A2 and S100A10, a dimeric protein associated with annexin A2. Interaction of plasmin with annexin A2 resulted in the stimulation of ERK1/2 and p38 MAPK, cyclooxygenase-2, and PGE(2), leading to increased MMP-1 production. Furthermore, binding of inactive plasmin to annexin A2 inhibited plasmin induction of MMP-1, suggesting that inactive plasmin may be useful in suppressing inflammation.  相似文献   

14.
p22 is a novel plasminogen fragment with antiangiogenic activity.   总被引:1,自引:0,他引:1  
Tumor or tumor-associated cells cleave circulating plasminogen into three or four kringle-containing antiangiogenic fragments, collectively referred to as angiostatin. Angiostatin blocks tumor growth and metastasis by preventing the growth of endothelial cells that are critical for tumor vascularization. Here, we show that cancer and normal cells convert plasminogen into a novel 22 kDa fragment (p22). Production of this plasminogen fragment in a cell-free system has allowed characterization of the structure and activity of the protein. p22 consists of amino acid residues 78-180 of plasminogen and therefore embodies the first plasminogen kringle (residues 84-162) as well as additional N- and C-terminal residues. Circular dichroism and intrinsic fluorescence spectrum analysis have defined structural differences between p22 and recombinant plasminogen kringle 1 (rK1), therefore suggesting a unique conformation for kringle 1 within p22. Proliferation of capillary endothelial cells but not cells of other lineages was selectively inhibited by p22 in vitro. In addition, p22 prevented vascular growth of chick chorioallantoic membranes (CAMs) in vivo. Furthermore, administration of p22 at low dose suppressed the growth of murine Lewis lung carcinoma (LLC) metastatic foci in vivo. This is the first identification of a single kringle-containing antiangiogenic plasminogen fragment produced under physiological conditions.  相似文献   

15.
Epithelial-mesenchymal transformation (EMT), the process by which epithelial cells are converted into motile, invasive mesenchymal cells, is critical to valvulogenesis. Transforming growth factor-beta3 (TGF-beta3), an established mediator of avian atrioventricular (AV) canal EMT, is secreted as a latent complex. In vitro, plasmin-mediated proteolysis has been shown to release active TGF-betas from the latent complex. Annexin II, a co-receptor for tissue plasminogen activator (tPA) and plasminogen, promotes cell-surface generation of the serine protease plasmin. Here, we show that annexin II-mediated plasmin activity regulates release of active TGF-beta3 during chick AV canal EMT. Primary embryonic endocardial-derived cells express annexin II which promotes plasminogen activation in vitro. Incubation of heart explant cultures with either alpha(2)antiplasmin (alpha(2)AP), a major physiological plasmin inhibitor, or anti-annexin II IgG, blocked EMT by approximately 80%, and 50%, respectively. Anti-annexin II IgG-mediated inhibition of EMT was overcome by the addition of recombinant TGF-beta3. Upon treatment with anti-annexin II IgG or alpha(2)AP, conditioned medium from heart explant cultures showed absence of the active fragment of TGF-beta3 by Western blot analysis and a approximately 50% decrease in TGF-beta specific bioactivity. Our results suggest that annexin II-mediated plasmin activity regulates the release of active TGF-beta during cardiac valve development in the avian heart.  相似文献   

16.
Proteolytic processing of epithelial sodium channel (ENaC) subunits occurs as channels mature within the biosynthetic pathway. The proteolytic processing events of the alpha and gamma subunits are associated with channel activation. Furin cleaves the alpha subunit ectodomain at two sites, releasing an inhibitory tract and activating the channel. However, furin cleaves the gamma subunit ectodomain only once. A second distal cleavage in the gamma subunit induced by other proteases, such as prostasin and elastase, is required to release a second inhibitory tract and further activate the channel. We found that the serine protease plasmin activates ENaC in association with inducing cleavage of the gamma subunit at gammaLys194, a site distal to the furin site. A gammaK194A mutant prevented both plasmin-dependent activation of ENaC and plasmin-dependent production of a unique 70-kDa carboxyl-terminal gamma subunit cleavage fragment. Plasmin-dependent cleavage and activation of ENaC may have a role in extracellular volume expansion in human disorders associated with proteinuria, as filtered plasminogen may be processed by urokinase, released from renal tubular epithelium, to generate active plasmin.  相似文献   

17.
The annexin A2 (A2) heterotetramer, consisting of two copies of A2 and two copies of S100A10/p11, promotes fibrinolytic activity on the surface of vascular endothelial cells by assembling plasminogen and tissue plasminogen activator (tPA) and accelerating the generation of plasmin. In humans, overexpression of A2 by acute promyelocytic leukemia cells is associated with excessive fibrinolysis and hemorrhage, whereas anti-A2 autoantibodies appear to accentuate the risk of thrombosis in patients with anti-phospholipid syndrome. Complete deficiency of A2 in mice leads to a lack of tPA cofactor activity, accumulation of intravascular fibrin, and failure to clear arterial thrombi. Within the endothelial cell, p11 is required for Src kinase-mediated tyrosine phosphorylation of A2, which signals translocation of both proteins to the cell surface. Here we show that p11 is expressed at very low levels in the absence of A2 both in vitro and in vivo. We demonstrate further that unpartnered p11 becomes polyubiquitinated and degraded via a proteasome-dependent mechanism. A2 stabilizes intracellular p11 through direct binding, thus masking an autonomous p11 polyubiquitination signal that triggers proteasomal degradation. This interaction requires both the p11-binding N-terminal domain of A2 and the C-terminal domain of p11. This mechanism prevents accumulation of free p11 in the endothelial cell and suggests that regulation of tPA-dependent cell surface fibrinolytic activity is precisely tuned to the intracellular level of p11.  相似文献   

18.
In inflammatory macrophages, plasminogen activator exists in two active forms, a soluble form released into the extracellular medium and a cell-associated form. This communication describes some properties of the cellular form of plasminogen activator, in intact macrophages and in cell lysates. Cellular plasminogen activator is a membrane protein, associated with the outer face of the plasma membrane; in intact macrophages, it participates in the activation of exogenous plasminogen and, thus, has to be considered as an ectoenzyme. A plasminogen activator activity can be detected in cell lysates (macrophage monolayers lysed in 0.1% Triton X-100) only when plasmin production is followed by the use of small synthetic substrates because a soluble inhibitor, released during extraction, blocks plasmin fibrinolytic activity. In these lysates, plasminogen activator molecules exist as high molecular weight unstable complexes exhibiting a high affinity for plasminogen.  相似文献   

19.
We have previously demonstrated that plasminogen activator inhibitor (PAI-1) is associated with the extracellular matrix of cultured bovine smooth muscle cells (Knudsen, B.S., Harpel, P.C., Nachman, R.L. (1987) J. Clin. Invest. 80, 1082-1089). In this report we describe the physiologic role of PAI-1 during the interaction of the tissue plasminogen activator (t-PA) secreting Bowes human melanoma cell line with endothelial extracellular matrices. In addition we have characterized the t-PA.PAI complexes formed during this interaction in the presence and absence of plasminogen. In the absence of plasminogen, a 104-kDa complex between Bowes t-PA and PAI-1 appears in the supernatant. In the presence of plasminogen, PAI initially prevents plasmin formation on the matrix and protects the matrix from degradation by plasmin. The 104-kDa t-PA.PAI complex is degraded into a 68 and a 47-kDa complex by small amounts of plasmin generated from secreted Bowes t-PA and plasminogen. Analysis of these complexes revealed that t-PA is rapidly cleaved by plasmin within the complex whereas complexed PAI-1 is not further degraded. Matrix-associated PAI-1 may play an important role in the protection of extracellular matrices from remodeling and degradation by cellular t-PA and plasminogen.  相似文献   

20.
A novel single polypeptide endopeptidase of 24 kDa (24k-endopeptidase) was purified with a yield of 300-400 microg/L from conditioned medium of a bacterial strain which was identified as a new species in the genus Chryseobacterium Sp. on the basis of its 16S rDNA sequence and DNA:DNA hybridizations. The NH(2)-terminal amino acid sequence (Val-Ala-Thr-Pro-Asn-Leu-Glu-.) was not found in the availabe databases. The 24k-endopeptidase specifically hydrolyzed the Ser(441)-Val(442) peptide bond in human plasmin(ogen), with additional cleavage of the Lys(78)-Val(79) and Pro(447)-Val(448) peptide bonds, and a secondary cleavage at Lys(615)-Val(616). Thereby, plasminogen is converted into an angiostatin-like fragment containing kringles 1-4 (K1-4) and miniplasminogen (kringle 5 and the serine proteinase domain). The purified K1-4 fragment showed a comparable cytotoxicity toward endothelial cells as the elastase-derived K1-3 fragment (12.7% versus 10.6% at a concentration of 10 microg/mL). Plasminogen, bound to monocytoid THP-1 cells, was also cleaved by the 24k-endopeptidase, resulting in generation of an angiostatin-like fragment and in a decreased capacity to generate cell-associated plasmin following activation by urokinase. The 24k-endopeptidase was not efficiently neutralized by specific inhibitors against the serine, cysteine, aspartic, or matrix metalloproteinase classes of enzymes. In human plasma or serum, however, it induced only very limited plasminogen degradation, apparently due to neutralization of its activity by alpha(2)-macroglobulin. Interaction of this novel 24k-endopeptidase with plasminogen thus yields an angiostatin-like fragment and affects plasmin-mediated cellular proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号