共查询到20条相似文献,搜索用时 25 毫秒
1.
Identification of the Serratia marcescens hemolysin determinant by cloning into Escherichia coli. 总被引:9,自引:5,他引:9 下载免费PDF全文
V Braun B Neuss Y Ruan E Schiebel H Schffler G Jander 《Journal of bacteriology》1987,169(5):2113-2120
A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50L::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hly, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxy-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (Mr 504) to maltoheptaose (Mr 1,152) and was totally abolished by dextran 4 (Mr 4,000). This result and the observed influx of [14C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin. 相似文献
2.
Hemolysis by Serratia marcescens is caused by two proteins, ShlA and ShlB. ShlA is the hemolysin proper, and ShlB transports ShlA through the outer membrane, whereby ShlA is converted into a hemolysin. Superhemolytic ShlA derivatives that displayed 7- to 20-fold higher activities than wild-type ShlA were isolated. ShlA80 carried the single amino acid replacement of G to D at position 326 (G326D), ShlA87 carried S386N, and ShlA80III carried G326D and N236D. Superhemolysis was attributed to the greater stability of the mutant ShlA derivatives because they aggregated less than the wild-type hemolysin, which lost activity within 3 min at 20 degrees C. In contrast to the highly hemolytic wild-type ShlA at 0 degrees C, the hyperlytic hemolysins were nonhemolytic at 0 degrees C, suggesting that the hyperlytic derivatives differed from wild-type ShlA in adsorption to and insertion into the erythrocyte membrane. However, the size of the pores formed at 20 degrees C by superhemolytic hemolysins could not be distinguished from that of wild-type ShlA. In addition to the N-terminal sequence up to residue 238, previously identified to be important for activation and secretion, sites 326 and 386 contribute to hemolysin activity since they are contained in regions that participate in hemolysin inactivation through aggregation. 相似文献
3.
The hemolytic activity of Serratia marcescens is determined by two polypeptides, termed ShlA and ShlB. ShlA is synthesized as an inactive precursor (ShlA*) and secreted with the help of ShlB, which is located in the outer membrane. In this study, it is shown that a cell lysate containing ShlB as well as partially purified ShlB converted ShlA* to the active ShlA hemolysin. ShlA remained active after removal of ShlB by column chromatography. In contrast to the stable modification of ShlA* by ShlB, a reversible activation was achieved by adding to ShlA* an N-terminal fragment of ShlA (ShlA16), consisting of 269 amino acid residues of ShlA and 18 residues of the vector. The nonhemolytic ShlA16 complemented ShlA* only when it was synthesized in an ShlB-producing cell. A deletion derivative of ShlA*, lacking residues 4 to 117, was complemented by ShlA16 but not activated by ShlB. Activation of ShlA* by ShlB at 4 degrees C proceeded at a much slower rate than complementation by ShlA16. It is concluded that ShlA* is modified by ShlB. ShlA16 modified by ShlB complements the missing modification of ShlA* in trans. Modification by ShlB occurs in the N-terminal part of ShlA*, which is also the reaction in vivo which results in active ShlA hemolysin in the culture supernatant. The HpmA hemolysin of Proteus mirabilis, which is very similar to ShlA, was also activated in vitro by ShlB and complemented by ShlA16. 相似文献
4.
It is shown that Serratia marcescens exports a hemolysin to the cell surface and secretes it to the extracellular space. Escherichia coli containing the cloned hemolysin genes shlA and shlB exported and secreted the S. marcescens hemolysin. A nonhemolytic secretion-incompetent precursor of the hemolysin, designated ShlA*, was synthesized in a shlB deletion mutant and accumulated in the periplasmic space of E. coli. Immunogold-labeled ultrathin sections revealed ShlA* bound to the outer face of the cytoplasmic membrane and to the inner face of the outer membrane. A number of mutants carrying 3' deletions in the shlA gene secreted truncated polypeptides, the smallest of which contained only 261 of the 1578 amino acids of the mature ShlA hemolysin, showing that the information for export to the cell surface of E. coli and secretion into the culture medium is located in the NH2-terminal segment of the hemolysin. We propose a secretion pathway in which ShlA and ShlB are exported across the cytoplasmic membrane via a signal sequence-dependent mechanism. ShlB is integrated into the outer membrane. ShlA is translocated across the outer membrane with the help of ShlB. During the latter export process or at the cell surface, ShlA acquires the hemolytically active conformation and is released to the extracellular space. The hemolysin secretion pathway appears to be different from any other secretion system hitherto reported and involves only a single specific export protein. 相似文献
5.
We previously reported that an acidomycin-resistant mutant of Serratia marcescens Sr41, SB304, and a mutant that was derived from SB304 and was resistant to a higher concentration of acidomycin, SB412, produced 5 and 20 mg of D-biotin, respectively, per liter of a medium containing sucrose and urea (N. Sakurai, Y. Imai, M. Masuda, S. Komatsubara, and T. Tosa, Appl. Environ. Microbiol. 59:2857-2863, 1993). In order to increase the productivity of D-biotin, the biotin (bio) operons were cloned from strains SB412, SB304, and 8000 (wild-type strain), and pLGM412, pLGM304, and pLGW101, respectively, were obtained through subcloning. These plasmids harbored 7.2-kb DNA fragments coding for the bioABFCD genes on a low-copy-number vector and were introduced into SB304, SB412, and 8000. Among the resulting recombinant strains, SB412(pLGM304) exhibited the highest D-biotin production (200 mg/liter) in the production medium. The plasmid was stably maintained in cells. Unexpectedly, SB412(pLGM412) grew very slowly, and the D-biotin productivity of this recombinant strain was not evaluated because pLGM412 was unstable. 相似文献
6.
Molecular characterization of polyphosphate kinase (ppk) gene from Serratia marcescens 总被引:1,自引:0,他引:1
To understand the mechanism of phosphate accumulation, a gene encoding polyphosphate kinase (PPK) was cloned from the genomic library of Serratia marcescens by Southern hybridization. From the nucleotide sequence of a 4 kb DNA fragment, an open reading frame of 2063 nucleotides was identified encoding a protein of 686 amino acids with molecular mass of 70 kDa. The potential CRP binding site and pho box sequence were found upstream of the putative promoter in the regulatory region. The expression of PPK resulted in the formation of inclusion bodies and the product was active at low temperature. The E. coli strain harboring plasmid pSPK5 with ppk gene increased enzyme activity of polyphosphate kinase, resulting in increased accumulation of polyphosphate in E. coli. 相似文献
7.
The extracellular proteinase produced by a depressed strain of Serratia marcescens ATCC 25419 was purified and characterized. This produces more than 10-times the amount of extracellular proteinase produced by other strains of Serratia tested. The purified enzyme was prepared from the culture supernatant by (NH4)2SO4 fractionation and DEAE-cellulose chromatography. The purified enzyme has an so20,w of 3.95 and is a monomer of molecular weight 51,900. The proteinase has a broad pH optimum in the alkaline range with a maximum at pH 9.5. The enzyme will utilize a number of proteins as substrate. The products of digestion are primarily in the size range of tripeptides to hexapeptides. Peptides containing a sensitive bond and a minimum size of size amino acids are hydrolyzed. The proteinase is inhibited by chelating agents but unaffected by sulfhydryl or serine reagents and is devoid of esterase activity. 相似文献
8.
一株粘质沙雷氏菌烈性噬菌体污水分离及特性 总被引:1,自引:0,他引:1
[目的]以粘质沙雷氏菌(8039)为宿主菌从医院污水中分离噬菌体并对其基本生物学特点进行研究.[方法]四步法污水分离噬菌体;单、双层平板噬菌斑实验筛选烈性噬菌体并观察噬菌斑形态;纯化后2%磷钨酸染色电镜观察;手工法提取噬菌体核酸酶切后琼脂糖凝胶电泳分析;利用双层平板噬菌斑实验测定最佳感染复数和完成一步生长实验.[结果]从医院污水中成功分离出粘质沙雷氏菌烈性噬菌体一株(SM701),该噬菌体有一个正多面体立体对称的头部,头径约64nm,无囊膜,有一长尾,无收缩尾鞘,尾长约143nm;基因组核酸能被双链DNA内切酶BamH Ⅰ及Hind Ⅲ切开,大小约57kb;噬菌斑圆形透明,直径1mm左右(培养12h,),边界清楚;当感染复数(multiplicity of infection,MOI)为10时,子代噬菌体滴度较高;按照一步生长实验结果绘制出一步生长曲线,可知感染宿主菌的潜伏期是约为30min,爆发期约100min,平均爆发量约为630[结论]按照国际病毒分类委员会分类标准,该噬菌体属于长尾噬菌体科(siphoviridae)烈性噬菌体,按照Bradley和Ackermann形态分类法属于B1亚群;噬菌斑与周围红色细菌生长区,颜色差异明显,非常便于观察和计数;噬菌体头部大小和形态与呼吸道病毒中的呼肠病毒和腺病毒最为接近;国内尚未见粘质沙雷氏菌噬菌体相关报道. 相似文献
9.
Two forms of beta-N-acetylhexosaminidase from Serratia marcescens with an optimum pH of 5.0 and 6.5, respectively, to 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside were separated by DEAE-cellulose chromatography and Sephacryl S-200 chromatography. On the basis of their molecular weights, thermal stability, substrate specificity and isoelectric points, the form with an acidic pH optimum resembled hexosaminidase B, whereas the form with a neutral pH optimum resembled hexosaminidase C. Lectin binding studies showed that the acidic form does not bind to concanavalin-A-Sepharose, Tetragonolobus purpurea-agarose, wheat germ-agglutinin-Sepharose or Ricinus communis-agglutinin-agarose, whereas the neutral form binds to the last two lectin columns. 相似文献
10.
Thompson SA Maani EV Lindell AH King CJ McArthur JV 《Applied and environmental microbiology》2007,73(7):2199-2206
Resistances to tetracycline and mercury were identified in an environmental strain of Serratia marcescens isolated from a stream highly contaminated with heavy metals. As a step toward addressing the mechanisms of coselection of heavy metal and antibiotic resistances, the tetracycline resistance determinant was cloned in Escherichia coli. Within the cloned 13-kb segment, the tetracycline resistance locus was localized by deletion analysis and transposon mutagenesis. DNA sequence analysis of an 8.0-kb region revealed a novel gene [tetA(41)] that was predicted to encode a tetracycline efflux pump. Phylogenetic analysis showed that the TetA(41) protein was most closely related to the Tet(39) efflux protein of Acinetobacter spp. yet had less than 80% amino acid identity with known tetracycline efflux pumps. Adjacent to the tetA(41) gene was a divergently transcribed gene [tetR(41)] predicted to encode a tetracycline-responsive repressor protein. The tetA(41)-tetR(41) intergenic region contained putative operators for TetR(41) binding. The tetA(41) and tetR(41) promoters were analyzed using lacZ fusions, which showed that the expression of both the tetA(41) and tetR(41) genes exhibited TetR(41)-dependent regulation by subinhibitory concentrations of tetracycline. The apparent lack of plasmids in this S. marcescens strain, as well as the presence of metabolic genes adjacent to the tetracycline resistance locus, suggested that the genes were located on the S. marcescens chromosome and may have been acquired by transduction. The cloned Tet 41 determinant did not confer mercury resistance to E. coli, confirming that Tet 41 is a tetracycline-specific efflux pump rather than a multidrug transporter. 相似文献
11.
Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. 总被引:35,自引:18,他引:35 下载免费PDF全文
We cloned the DNA containing the Escherichia coli hemolysin determinant on a small, high-copy plasmid. We generated plasmids containing fragments of this DNA and used them either alone or in two-plasmid complementation systems to define the limits of the structural genes. This system also allowed us to partially characterize the function of each of the gene products in the production and transport of hemolysin. Taken with previously published data, the present experiments indicate the following. (i) At least three cistrons, hlyC, hlyA, and hlyB (these were previously designated cisC, etc. [Noegel et al., Mol. Gen. Genet. 175:343-350, 1979]), contain the specific genetic information for the hemolytic phenotype, (ii) hlyA encodes a 107,000-kilodalton protein, which seems to be an inactive precursor of hemolysin. (iii) Normal amounts of hemolysin activity inactive precursor of hemolysin. (iii) Normal amounts of hemolysin activity require only the products of hlyA and hlyC. This activity was found in the periplasm; very little hemolysin activity was found in the cytoplasm, suggesting that the hlyC product is required for transport or activation of the hlyA product or both. (iv) Active hemolysin remains in the periplasm in the absence of hlyB function, hence the hlyB product seems to be necessary for the transport of hemolysin to the exterior of the cell. We further show that overproduction of the hlyA product is lethal, probably causing lysis of the cell. 相似文献
12.
Genetic modification of Serratia marcescens QMB1466 was undertaken to isolated mutants which produce increased levels of chitinolytic activity. After mutagenesis with ultraviolet light, ethyl methane sulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, 19,940 colonies were screened for production of enlarged zones of clearing (indicative of chitinase activity) on chitin-containing agar plates. Forty-four chitinase high producers were tested further in shake flask cultures. Mutant IMR-1E1 was isolated which, depending on medium composition, produced two to three times more than the wild type of the other components of the chitinolytic enzyme system--a factor involved in the hydrolysis of crystalline chitin and chitobiase. After induction by chitin, endochitinase and chitobiase activity appeared at similar times for both IMR-1E1 and QMB1466, suggesting possible coordinate control of these enzymes. The results are consistent with IMR-1E1 containing a regulatory mutation which increased production of the components of the chitinolytic enzyme system and/or with IMR-1E1 containing a tandem duplication of the chitinase genes. The high rate of reversion of IMR-1E1 to decreased levels of chitinase production suggests that the overproduction of chitinase by IMR-1E1 is due to a tandem gene duplication. 相似文献
13.
14.
Molecular cloning and characterization of a genetic region from Serratia marcescens involved in DNA repair 总被引:2,自引:1,他引:2
We report here the molecular isolation of a DNA fragment which encodes Tag-like activity from the Gram-negative bacterium Serratia marcescens. A recombinant plasmid encoding Tag-like activity was isolated from a S. marcescens plasmid gene library by complementation of an Escherichia coli tag mutant, which is deficient in 3-methyladenine DNA glycosylase I. The clone complements E. coli tag, recA, alkA, but not alkB, mutants for resistance to the DNA-damaging agent methyl methanesulphonate (MMS). The coding region of the Tag activity, initially isolated on a 6.5kb BamHI fragment, was defined to a 1.8kb BglII-SmaI fragment. Labelling of plasmid-encoded proteins using maxicells revealed that the 1.8kb fragment encodes two proteins of molecular weights 42,000 and 16,000. Data presented here suggest that the cloned fragment encodes a DNA repair protein(s) that has similar activity to the 3-methyladenine DNA glycosylase I of E. coli. 相似文献
15.
16.
17.
18.
Molecular cloning of the hemolysin determinant from Vibrio cholerae El Tor 总被引:8,自引:0,他引:8 下载免费PDF全文
Vibrio cholerae El Tor RV79 is phenotypically nonhemolytic; however, strongly hemolytic convertants are occasionally observed on blood agar plates. We have cloned DNA sequences corresponding to the hemolysin determinant from RV79 (Hly+) in the lambda L47.1 and pBR322 vectors. A 2.3-kilobase fragment of V. cholerae DNA was found to be necessary for hemolytic activity. This cloned DNA sequence was used as a probe in Southern blot hybridization analysis of chromosomal restriction digests of a variety of El Tor and classical biotype V. cholerae strains. In all cases, DNA fragments with the same electrophoretic mobilities hybridized to the Hly probe. The results presented demonstrate that the cloned hemolysin determinant is the hly locus. By using mutator vibriophage VcA-3 insertion to promote high-frequency transfer, the hly locus was mapped between arg and ilv on the V. cholerae RV79 chromosome. 相似文献
19.
The wild strain of Serratia marcescens rapidly degraded threonine and formed aminoacetone in a medium containing glucose and urea. Extracts of this strain showed high threonine dehydrogenase and "biosynthetic" threonine deaminase activities, but no threonine aldolase activity. Threonine dehydrogenase-deficient strain Mu-910 was selected among mutants unable to grow on threonine as the carbon source. This strain did not form aminoacetone from threonine, but it slowly degraded threonine. Strain D-60, deficient in both threonine dehydrogenase and threonine deaminase, was derived from strain Mu-910 and barely degraded threonine. A glycine-requiring strain derived from the wild strain grew in minimal medium containing threonine as the glycine source, whereas a glycine-requiring strain derived from strain Mu-910 did not grow. This indicates that threonine dehydrogenase participates in glycine formation from threonine (via alpha-amino-beta-ketobutyrate) as well as in threonine degradation to aminoacetone. 相似文献
20.
J D Sleigh 《BMJ (Clinical research ed.)》1983,287(6406):1651-1652