首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.  相似文献   

2.
The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.  相似文献   

3.
Cysteine dioxygenase (CDO) utilizes a 3-His facial triad for coordination of its metal center. Recombinant CDO present in cellular lysate exists primarily in the ferrous form and exhibits significant catalytic activity. Removal of CDO from the reducing cellular environment during purification results in the loss of bound iron and oxidation of greater than 99% of the remaining metal centers. The as-isolated recombinant enzyme has comparable activity as the background level of L-cysteine oxidation confirming that CDO is inactive under the aerobic conditions required for catalysis. Including exogenous ferrous iron in assays resulted in non-enzymatic product formation; however, addition of an external reductant in assays of the purified protein resulted in the recovery of CDO activity. EPR spectroscopy of CDO in the presence of a reductant confirms that the recovered activity is consistent with reduction of iron to the ferrous form. The as-isolated enzyme in the presence of L-cysteine was nearly unreactive with the dioxygen analog, but had increased affinity when pre-incubated with an external reductant. These studies shed light on the discrepancies among reported kinetic parameters for CDO and also juxtapose the stability of the 3-His and 2-His/1-carboxylate ferrous enzymes in the presence of dioxygen.  相似文献   

4.
Cysteine dioxygenase (CDO) from rat and other mammals exhibits a covalent post-translational modification between the residues C93 and Y157 that is in close proximity to the active site, and whose presence enhances the enzyme's activity. Protein with and without C93-Y157 crosslink migrates as distinct bands in SDS-PAGE, allowing quantification of the relative ratios between the two forms by densitometry of the respective bands. Expression of recombinant rat wild type CDO in Escherichia coli typically produces 40-50% with the C93-Y157 crosslink. A strategy was developed to increase the ratio of the non-crosslinked form in an enzyme preparation of reasonable quantity and purity, allowing direct assessment of the activity of non-crosslinked CDO and mechanism of formation of the crosslink. The presence of ferrous iron and oxygen is a prerequisite for C93-Y157 crosslink formation. Absence of oxygen during protein expression increased the fraction of non-crosslinked CDO, while presence of the metal chelator EDTA had little effect. Metal affinity chromatography was used to enrich non-crosslinked content. Both the enzymatic rate of cysteine oxidation and the amount of cross-linking between C93 and Y157 increased significantly upon exposure of CDO to air/oxygen and substrate cysteine in the presence of iron in a hitherto unreported two-phase process. The instantaneous activity was proportional to the amount of crosslinked enzyme present, demonstrating that the non-crosslinked form has negligible enzymatic activity. The biphasic kinetics suggest the existence of an as yet uncharacterised intermediate in crosslink formation and enzyme activation.  相似文献   

5.
The first experimental evidence of a tight binding iron(II)-CDO complex is presented. These data enabled the relationship between iron bound and activity to be explicitly proven. Cysteine dioxygenase (CDO) from Rattus norvegicus has been expressed and purified with ~0.17 Fe/polypeptide chain. Following addition of exogenous iron, iron determination using the ferrozine assay supported a very tight stoichiometric binding of iron with an extremely slow rate of dissociation, k(off) ~ 1.7 × 10(-6) s(-1). Dioxygenase activity was directly proportional to the concentration of iron. A rate of cysteine binding to iron(III)-CDO was also measured. M?ssbauer spectra show that in its resting state CDO binds the iron as high-spin iron(II). This iron(II) active site binds cysteine with a dissociation constant of ~10 mM but is also able to bind homocysteine, which has previously been shown to inhibit the enzyme.  相似文献   

6.
There are only two known thiol dioxygenase activities in mammals, and they are ascribed to the enzymes cysteine dioxygenase (CDO) and cysteamine (2-aminoethanethiol) dioxygenase (ADO). Although many studies have been dedicated to CDO, resulting in the identification of its gene and even characterization of the tertiary structure of the protein, relatively little is known about cysteamine dioxygenase. The failure to identify the gene for this protein has significantly hampered our understanding of the metabolism of cysteamine, a product of the constitutive degradation of coenzyme A, and the synthesis of taurine, the final product of cysteamine oxidation and the second most abundant amino acid in mammalian tissues. In this study we identified a hypothetical murine protein homolog of CDO (hereafter called ADO) that is encoded by the gene Gm237 and belongs to the DUF1637 protein family. When expressed as a recombinant protein, ADO exhibited significant cysteamine dioxygenase activity in vitro. The reaction was highly specific for cysteamine; cysteine was not oxidized by the enzyme, and structurally related compounds were not competitive inhibitors of the reaction. When overexpressed in HepG2/C3A cells, ADO increased the production of hypotaurine from cysteamine. Similarly, when endogenous expression of the human ADO ortholog C10orf22 in HepG2/C3A cells was reduced by RNA-mediated interference, hypotaurine production decreased. Western blots of murine tissues with an antibody developed against ADO showed that the protein is ubiquitously expressed with the highest levels in brain, heart, and skeletal muscle. Overall, these data suggest that ADO is responsible for endogenous cysteamine dioxygenase activity.  相似文献   

7.
Crawford JA  Li W  Pierce BS 《Biochemistry》2011,50(47):10241-10253
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O(2)-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). In this study we demonstrate that the catalytic cycle of CDO can be "primed" by one electron through chemical oxidation to produce CDO with ferric iron in the active site (Fe(III)-CDO, termed 2). While catalytically inactive, the substrate-bound form of Fe(III)-CDO (2a) is more amenable to interrogation by UV-vis and EPR spectroscopy than the 'as-isolated' Fe(II)-CDO enzyme (1). Chemical-rescue experiments were performed in which superoxide (O(2)(?-)) anions were introduced to 2a to explore the possibility that a Fe(III)-superoxide species represents the first intermediate within the catalytic pathway of CDO. In principle, O(2)(?-) can serve as a suitable acceptor for the remaining 3-electrons necessary for CSA formation and regeneration of the active Fe(II)-CDO enzyme (1). Indeed, addition of O(2)(?-) to 2a resulted in the rapid formation of a transient species (termed 3a) observable at 565 nm by UV-vis spectroscopy. The subsequent decay of 3a is kinetically matched to CSA formation. Moreover, a signal attributed to 3a was also identified using parallel mode X-band EPR spectroscopy (g ~ 11). Spectroscopic simulations, observed temperature dependence, and the microwave power saturation behavior of 3a are consistent with a ground state S = 3 from a ferromagnetically coupled (J ~ -8 cm(-1)) high-spin ferric iron (S(A) = 5/2) with a bound radical (S(B) = 1/2), presumably O(2)(?-). Following treatment with O(2)(?-), the specific activity of recovered CDO increased to ~60% relative to untreated enzyme.  相似文献   

8.
Lactoferrin is an 80kDa iron-binding glycoprotein. It is secreted by exocrine glands. Many functions such as iron sequestering, anti-bacterial activity, regulation of gene expression, and immunomodulation are attributed to it. In the present study, we report the production of recombinant equine lactoferrin (ELF) in the methylotropic yeast Pichia pastoris using pPIC9K vector. The recombinant protein was purified by one-step affinity chromatography using heparin-Sepharose column. The purified protein has a molecular weight of 80kDa and reacted with antibody raised against the native equine lactoferrin. Its N-terminal sequence was identical to that of the native ELF. The iron-binding behavior and circular dichroism studies of the purified protein indicate that it has folded properly. The recombinant protein appears to be hyperglycosylated by the host strain, GS115. This is the first heterologous expression of equine lactoferrin and also the first report of intact lactoferrin expression using P. pastoris system. An yield of 40mg/l obtained in shake-flask cultures with this system, which is higher than the reported values for other systems.  相似文献   

9.
In metazoa and fungi, the catabolic dissimilation of cysteine begins with its sulfoxidation to cysteine sulfinic acid by the enzyme cysteine dioxygenase (CDO). In these organisms, CDO plays an important role in the homeostatic regulation of steady-state cysteine levels and provides important oxidized metabolites of cysteine such as sulfate and taurine. To date, there has been no experimental evidence for the presence of CDO in prokaryotes. Using PSI-BLAST searches and crystallographic information about the active-site geometry of mammalian CDOs, we identified a total of four proteins from Bacillus subtilis, Bacillus cereus, and Streptomyces coelicolor A3(2) that shared low overall identity to CDO (13 to 21%) but nevertheless conserved important active-site residues. These four proteins were heterologously expressed and purified to homogeneity by a single-step immobilized metal affinity chromatography procedure. The ability of these proteins to oxidize cysteine to cysteine sulfinic acid was then compared against recombinant rat CDO. The kinetic data strongly indicate that these proteins are indeed bona fide CDOs. Phylogenetic analyses of putative bacterial CDO homologs also indicate that CDO is distributed among species within the phyla of Actinobacteria, Firmicutes, and Proteobacteria. Collectively, these data suggest that a large subset of eubacteria is capable of cysteine sulfoxidation. Suggestions are made for how this novel pathway of cysteine metabolism may play a role in the life cycle of the eubacteria that have it.  相似文献   

10.
11.
In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg‐type” enzymes) and some having a Gln substituted for this Arg (“Gln‐type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg‐type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln‐type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron‐bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln‐type” CDO enzymes, we conclude that the “Gln‐type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3‐mercaptopropionate dioxygenases.  相似文献   

12.
Indoleamine 2,3-dioxygenase, the first and rate-limiting enzyme in human tryptophan metabolism, has been implicated in the pathogenesis of many diseases. The human enzyme was expressed in Escherichia coli EC538 (pREP4) as a fusion protein to a hexahistidyl tag and purified to homogeneity in terms of electrophoretic and mass spectroscopic analysis, by a combination of phosphocellulose and nickel-agarose affinity chromatography. The yield of the fusion protein was 1.4 mg per liter of bacterial culture with an overall recovery of 56% from the crude extract. When the culture medium was supplemented with 7 microM hemin, the purified protein contained 0.8 mol of heme per mole of enzyme and exhibited an absorption spectrum consistent with the ferric form of hemoprotein. The pI value of the recombinant enzyme was 7.09 compared with 6.9 for the native enzyme. This was as expected from the addition of the hexahistidyl tag. Similar to the native enzyme, the recombinant enzyme required methylene blue and ascorbic acid for enzyme activity and oxidized not only l-tryptophan but also d-tryptophan and 5-hydroxy-l-tryptophan. The molecular activities for these substrates and their K(m) values were similar to those of the native enzyme, indicating that the addition of the hexahistidyl tag did not significantly affect catalytic activity. The recombinant protein can therefore be used to investigate properties of the native enzyme. This will aid the development of specific inhibitors of indoleamine 2,3-dioxygenase, which may be effective in halting disease progression.  相似文献   

13.
Hepatic cysteine dioxygenase (CDO) activity is a critical regulator of cellular cysteine concentration and availability of cysteine for anabolic processes and is markedly higher in animals fed diets containing excess sulfur amino acids compared with those fed levels at or below the requirement. Rat hepatocytes responded to a deficiency or excess of cysteine in the culture medium with a decrease or increase in CDO level but no change in CDO mRNA level. The cysteine analog, cysteamine, but not cysteine metabolites or thiol reagents, was also effective in increasing CDO. Inhibitors of the 26S proteasome blocked CDO degradation in cysteine-deficient cells but had little or no effect on CDO concentration in hepatocytes cultured with excess cysteine. High-molecular-mass CDO-ubiquitin conjugates were observed in cells cultured in cysteine-deficient medium, whether or not proteasome inhibitor was present, but these CDO-ubiquitin conjugates were not observed in cells cultured in cysteine-supplemented medium with or without proteasome inhibitor. Similar results were observed for degradation of recombinant CDO expressed in human heptocarcinoma cells cultured in cysteine-deficient or cysteine-supplemented medium. CDO is an example of a mammalian enzyme that is robustly regulated via its substrate, with the presence of substrate blocking the ubiquitination of CDO and, hence, the targeting of CDO for proteasomal degradation. This regulation occurs in primary hepatocytes in a manner that corresponds with changes observed in intact animals.  相似文献   

14.
Rat hepatocytes cultured for 3 days in basal medium expressed low levels of cysteine dioxygenase (CDO) and high levels of gamma-glutamylcysteine synthetase (GCS). When the medium was supplemented with 2 mmol/l methionine or cysteine, CDO activity and CDO protein increased by >10-fold and CDO mRNA increased by 1.5- or 3.2-fold. In contrast, GCS activity decreased to 51 or 29% of basal, GCS heavy subunit (GCS-HS) protein decreased to 89 or 58% of basal, and GCS mRNA decreased to 79 or 37% of basal for methionine or cysteine supplementation, respectively. Supplementation with cysteine consistently yielded responses of greater magnitude than did supplementation with an equimolar amount of methionine. Addition of propargylglycine to inhibit cystathionine gamma-lyase activity and, hence, cysteine formation from methionine prevented the effects of methionine, but not those of cysteine, on CDO and GCS expression. Addition of buthionine sulfoximine to inhibit GCS, and thus block glutathione synthesis from cysteine, did not alter the ability of methionine or cysteine to increase CDO. GSH concentration was not correlated with changes in either CDO or GCS-HS expression. The effectiveness of cysteine was equivalent to or greater than that of its precursors (S-adenosylmethionine, cystathionine, homocysteine) or metabolites (taurine, sulfate). Taken together, these results suggest that cysteine itself is an important cellular signal for upregulation of CDO and downregulation of GCS.  相似文献   

15.
Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.  相似文献   

16.
Two hepatic enzymes, cysteine dioxygenase (CDO) and gamma-glutamylcysteine synthetase (GCS), play important regulatory roles in the response of cysteine metabolism to changes in dietary sulfur amino acid or protein levels. To examine the time-course of changes in CDO and GCS activities, CDO and GCS-catalytic or heavy subunit protein and mRNA levels, and cysteine and glutathione levels, we adapted rats to either a low protein (LP) or high protein (HP) diet, switched them to the opposite diet, and followed these parameters over 6 days. Hepatic CDO activity and amount, but not mRNA level, increased in response to higher protein intake; the t(1/2) of change for CDO activity or protein level was 22 h for rats switched from a LP to a HP diet and 8 h for rats switched from a HP to a LP diet, suggesting that the HP diet decreased turnover of CDO. Hepatic GCS activity, catalytic subunit amount and mRNA level decreased in response to a higher protein intake. GCS catalytic subunit level changed with a similar t(1/2) for both groups, but the change in GCS activity in rats switched from a LP diet to a HP diet was faster (approximately 16h) than for rats switched from a HP to a LP diet (approximately 74h). Hepatic cysteine and glutathione levels reached new steady states within 12 h (LP to HP) or 24 h (HP to LP). CDO activity appeared to be regulated at the level of protein, probably by diminished turnover of CDO in response to higher protein intake or cysteine level, whereas GCS activity appeared to be regulated both at the level of mRNA and activity state in response to the change in cysteine or protein availability. These findings support a role of cysteine concentration as a mediator of its own metabolism, favoring catabolism when cysteine is high and glutathione synthesis when cysteine is low.  相似文献   

17.
Cysteine levels are carefully regulated in mammals to balance metabolic needs against the potential for cytotoxicity. It has been postulated that one of the major regulators of intracellular cysteine levels in mammals is cysteine dioxygenase (CDO). Hepatic expression of this catabolic enzyme increases dramatically in response to increased cysteine availability and may therefore be part of a homeostatic response to shunt excess toxic cysteine to more benign metabolites such as sulfate or taurine. Direct experimental evidence, however, is lacking to support the hypothesis that CDO is capable of altering steady-state intracellular cysteine levels. In this study, we expressed either the wild-type (WT) or a catalytically inactivated mutant (H86A) isoform of CDO in HepG2/C3A cells (which do not express endogenous CDO protein) and cultured them in different concentrations of extracellular cysteine. WT CDO, but not H86A CDO, was capable of reducing intracellular cysteine levels in cells incubated in physiologically relevant concentrations of cysteine. WT CDO also decreased the glutathione pool and potentiated the toxicity of CdCl(2). These results demonstrate that CDO is capable of altering intracellular cysteine levels as well as glutathione levels.  相似文献   

18.
Cysteine dioxygenase (CDO) catalyzes the conversion of cysteine to cysteinesulfinic acid and is important in the regulation of intracellular cysteine levels in mammals and in the provision of oxidized cysteine metabolites such as sulfate and taurine. Several crystal structure studies of mammalian CDO have shown that there is a cross-linked cofactor present in the active site of the enzyme. The cofactor consists of a thioether bond between the gamma-sulfur of residue cysteine 93 and the aromatic side chain of residue tyrosine 157. The exact requirements for cofactor synthesis and the contribution of the cofactor to the catalytic activity of the enzyme have yet to be fully described. In this study, therefore, we explored the factors necessary for cofactor biogenesis in vitro and in vivo and examined what effect cofactor formation had on activity in vitro. Like other cross-linked cofactor-containing enzymes, formation of the Cys-Tyr cofactor in CDO required a transition metal cofactor (Fe(2+)) and O(2). Unlike other enzymes, however, biogenesis was also strictly dependent upon the presence of substrate. Cofactor formation was also appreciably slower than the rates reported for other enzymes and, indeed, took hundreds of catalytic turnover cycles to occur. In the absence of the Cys-Tyr cofactor, CDO possessed appreciable catalytic activity, suggesting that the cofactor was not essential for catalysis. Nevertheless, at physiologically relevant cysteine concentrations, cofactor formation increased CDO catalytic efficiency by approximately 10-fold. Overall, the regulation of Cys-Tyr cofactor formation in CDO by ambient cysteine levels represents an unusual form of substrate-mediated feed-forward activation of enzyme activity with important physiological consequences.  相似文献   

19.
We previously constructed plasmids for synthesis of glutathione-peroxidase (GPx) mutants in an Escherichia coli expression system. In these recombinant proteins either cysteine ([Cys]GPx mutant) or serine ([Ser]GPx mutant) were present in place of the active-site selenocysteine (SeCys) of the natural enzyme. We have now investigated GPx activity of [Cys]GPx and [Ser]GPx mutants. Enzyme assays performed on preparations of these partially purified proteins demonstrated that the [Cys]GPx mutant exhibited a significant GPx activity, unlike the [Ser]GPx mutant. Purification of [Cys]GPx was performed in two steps of ion-exchange chromatography giving a 98% homogenous protein in 50% yield. The purified [Cys]GPx protein was shown to be a symmetrical tetramer by the means of gel-filtration HPLC and SDS/PAGE. Two isoelectric points were found (6.8 and 7.2) which may reflect two different oxidation states of the mutant protein. The GPx activity of the [Cys]GPx mutant was optimal at pH 8.5. The [Cys]GPx mutant had a specific activity approximately 1000-fold smaller than that of the natural enzyme, and was very easily inactivated by hydroperoxides. Inhibition of the activity with iodoacetate determined a pKa of 8.3, presumably that of the active-site cysteine. Unlike that of SeGPx, the GPx activity of [Cys]GPx was only slightly inhibited by mercaptosuccinate. We discuss hypothetical mechanistic constraints of either catalytic cycle, which may explain such results.  相似文献   

20.
Cobra venom (Naja naja naja) phospholipase A2 (PLA2) contains 14 cysteines in the form of 7 disulfide bonds amongst its 119 amino acids. A gene encoding the PLA2 was synthesized and inserted into a bacterial expression vector containing the phage lambda pL promoter. In order to obtain protein without the initiating methionine at the N-terminus, a Factor Xa site was engineered upstream from the PLA2 gene. Upon heat-induction of the cells transformed with the expression plasmid, the protein is produced as insoluble inclusion bodies. The enzyme was partially purified by washing the inclusion bodies with Triton X-100 and urea. The expressed protein was first denatured with 8 M guanidine-HCl and 10 mM DTT. After digestion with Factor Xa, formation of disulfide bonds and refolding into the fully active form was carried out in the presence of cysteine and Ca2+. The renatured recombinant protein was purified by Affi-gel blue column chromatography. The purified recombinant enzyme had the same specific activity as the native enzyme when assayed on a variety of substrates and cross-reacted with antisera prepared against the native enzyme. This is the first report of the expression of a recombinant PLA2 from any venom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号