首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.  相似文献   

2.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces a hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is highly expressed when C. fulvum is growing in the plant and the elicitor accumulates in infected leaves as a 28-amino acid (aa) peptide. In C. fulvum grown in vitro, the peptide elicitor is not produced in detectable amounts. To produce significant amounts of the AVR9 elicitor in vitro, the coding and termination sequences of the avr9 gene were fused to the constitutive gpd-promoter (glyceraldehyde 3-phosphate dehydrogenase) of Aspergillus nidulans. Transformants of C. fulvum were obtained that highly expressed the avr9 gene in vitro and produced active AVR9 peptide elicitors. These peptides were partially sequenced from the N terminus and appeared to consist of 32, 33, and 34 aa's, respectively, and are the precursors of the mature 28-aa AVR9 peptide. We demonstrated that plant factors process the 34-aa peptide into the mature 28-aa peptide. We present a model for the processing of AVR9 involving cleavage of a signal peptide during excretion and further maturation by fungal and plant proteases into the stable 28-aa peptide elicitor.  相似文献   

3.
Three constructs were used to study the expression of the avirulence gene Avr9 from the fungal tomato pathogen Cladosporium fulvum in plants. They include pAVIR1, pAVIR2 and pAVIR21, encoding the wild-type AVR9 protein and two hybrid AVR9 proteins containing the signal sequences of the pathogenesis-related proteins PR-S and PR-1a, respectively. Transgenic tobacco plants obtained with the three constructs showed a normal phenotype and produced AVR9 elicitor with the same specific necrosis-inducing activity as the wild-type AVR9 elicitor produced in planta by isolates of C. fulvum containing the Avr9 gene. Level of expression was not correlated with number of T-DNA integrations, but plants homozygous for the Avr9 gene produced more elicitor protein than heterozygous plants. The amino acid sequence of the processed AVR9 peptide present in apoplastic fluid (AF) of pAVIR1 transformed plants producing the wild-type AVR9 elicitor was identical to that of the wild-type AVR9 peptide isolated from C. fulvum-infected tomato leaves. Transgenic Cf0 genotypes of tomato, obtained by transformation with construct pAVIR21, showed a normal phenotype. However, transgenic F1 plants expressing the Avr9 gene, obtained from crossing transgenic Cf0 genotypes with wild-type Cf9 genotypes, showed delayed growth, necrosis and complete plant death indicating that the AVR9 peptide produced in plants carrying the Cf9 gene is deleterious. The necrotic defence response observed in Cf9 genotypes expressing the Avr9 gene support the potential to apply avirulence genes in molecular resistance breeding.  相似文献   

4.
Mutagenesis was used to identify and characterize plant genes required for fungal disease resistance gene function in tomato. Seed of a stock homozygous for the Cf-9 gene for resistance to Cladosporium fulvum were treated with ethyl methanesulfonate, and 568 M2 families were screened for mutations to C. fulvum sensitivity. Eight mutants with reduced resistance were isolated. Four mutations, all of which mapped to the Cf-9 gene, lost both resistance and response to the race-specific AVR9 elicitor. The other four mutations partially lost resistance and response to the AVR9 elicitor. Cytological analysis revealed that a unique host cell staining pattern accompanied the reduced-resistance phenotype in three mutants. Two of the mutants with reduced resistance mapped to Cf-9, and two mapped to two distinct loci designated Rcr-1 and Rcr-2 (Required for Cladosporium resistance) that are unlinked to Cf-9.  相似文献   

5.
Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction of resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 new races have evolved. Here we first determined the virulence spectrum of 133 C. fulvum isolates collected from 22 prefectures in Japan, and subsequently sequenced the avirulence (Avr) genes Avr2, Avr4, Avr4E, Avr5 and Avr9 to determine the molecular basis of overcoming Cf genes. Twelve races of C. fulvum with a different virulence spectrum were identified, of which races 9, 2.9, 4.9, 4.5.9 and 4.9.11 occur only in Japan. The Avr genes in many of these races contain unique mutations not observed in races identified elsewhere in the world including (i) frameshift mutations and (ii) transposon insertions in Avr2, (iii) point mutations in Avr4 and Avr4E, and (iv) deletions of Avr4E, Avr5 and Avr9. New races have developed by selection pressure imposed by consecutive introductions of Cf-2, Cf-4, Cf-5 and Cf-9 genes in commercially grown tomato cultivars. Our study shows that molecular variations to adapt to different Cf genes in an isolated C. fulvum population in Japan are novel but overall follow similar patterns as those observed in populations from other parts of the world. Implications for breeding of more durable C. fulvum resistant varieties are discussed.  相似文献   

6.
The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9 peptides to determine the relationship between elicitor activity of these peptides and their affinity to the binding site in the membranes of tomato. Mutant AVR9 peptides were purified from tobacco (Nicotiana clevelandii) inoculated with recombinant potato virus X expressing the corresponding avirulence gene Avr9. In addition, several AVR9 peptides were synthesized chemically. Physicochemical techniques revealed that the peptides were correctly folded. Most mutant AVR9 peptides purified from potato virus X::Avr9-infected tobacco contain a single N-acetylglucosamine. These glycosylated AVR9 peptides showed a lower affinity to the binding site than the nonglycosylated AVR9 peptides, whereas their necrosis-inducing activity was hardly changed. For both the nonglycosylated and the glycosylated mutant AVR9 peptides, a positive correlation between their affinity to the membrane-localized binding site and their necrosis-inducing activity in MoneyMaker-Cf9 tomato was found. The perception of AVR9 in resistant and susceptible plants is discussed.  相似文献   

7.
Defense responses mediated by the genetically unlinked Cf-9 and Cf-2 genes were compared with those involving no Cf gene (Cf0). Compatible tomato (Lycopersicon esculentum)-Cladosporium fulvum intercellular washing fluids were injected into tomato cotyledons, and the kinetics of responses was monitored under conditions of 70 and 98% relative humidity. The latter conditions suppressed the normal macroscopic responses. For the Cf-9-Avr9 interaction, stomatal opening was induced within 3 to 4 h and after 9 h mesophyll cell death commenced. A burst of ethylene production occurred between 9 and 12.5 h and remained elevated. Free salicylic acid levels increased after 12 h, peaked at 24 h, and thereafter declined. For the Cf-2-Avr2 interaction, stomata became plugged after 8 h, and salicylic acid and ethylene levels increased by 12 and 18 h, respectively, and thereafter declined. Host cell death commenced around vascular tissue by 24 h. Cell death in both incompatible interactions was frequently preceded by cell enlargement. For Cf0-injected plants, no significant responses were detected. High humidity delayed and reduced the Cf-Avr-gene-dependent cell death and ethylene synthesis, whereas induced salicylic acid levels were unaffected for Cf-2-Avr2 and reduced in magnitude only for Cf-9-Avr9.  相似文献   

8.
Three light-regulated genes, chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, and chalcone synthase (CHS), are demonstrated to be up-regulated in the high-pigment-1 (hp-1) mutant of tomato (Lycopersicon esculentum Mill.) compared with wild type (WT). However, the pattern of up-regulation of the three genes depends on the light conditions, stage of development, and tissue studied. Compared with WT, the hp-1 mutant showed higher CAB gene expression in the dark after a single red-light pulse and in the pericarp of immature fruits. However, in vegetative tissues of light-grown seedlings and adult plants, CAB mRNA accumulation did not differ between WT and the hp-1 mutant. The ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit mRNA accumulated to a higher level in the hp-1 mutant than WT under all light conditions and tissues studied, whereas CHS gene expression was up-regulated in de-etiolated vegetative hp-1-mutant tissues only. The CAB and CHS genes were shown to be phytochrome regulated and both phytochrome A and B1 play a role in CAB gene expression. These observations support the hypothesis that the HP-1 protein plays a general repressive role in phytochrome signal transduction.  相似文献   

9.
10.
11.
12.

Background

The human Vasoactive Intestinal Peptide (VIP) is a neurokine with effects on the immune system where it is involved in promoting tolerance. In this context, one of its receptors, VPAC1, has been found to be down-modulated in cells of the immune network in response to activating stimuli. In particular, the bacterial liposaccaride (LPS), a strong activator of the innate immune system, induces a rapid decrease of VPAC1 expression in monocytes and this event correlates with polymorphisms in the 3′-UTR of the gene.

Methodology/Principal Findings

MicroRNA 525-5p, having as putative target the 3′-UTR region of VPAC1, has been analysed for its expression in monocytes and for its role in down-modulating VPAC1 expression. We report here that miR-525-5p is promptly up-regulated in LPS-treated monocytes. This microRNA, when co-transfected in 293T cells together with a construct containing the 3′-UTR of the VPAC1 gene, significantly reduced the luciferase activity in a standard expression assay. The U937 cell line as well as primary monocytes enforced to express miR-525-5p, both down-modulate VPAC1 expression at similar extent.

Conclusions/Significance

Our results show that the response to an inflammatory stimulus elicits in monocytes a rapid increase of miR-525-5p that targets a signaling pathway involved in the control of the immune homeostasis.  相似文献   

13.
14.
Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.  相似文献   

15.
16.
17.
18.
19.
Foliar sprays containing 3,000 or 4,000 ppm oxamyl applied before inoculation with Meloidogyne hapla completely protected tomato plants from intection for up to 36 days but sprays containing 1,000 or 2,000 ppm provided only partial protection. Postinoculation sprays were less effective than preinoculation sprays but they decreased the numbers of females and their rate of development and increased the numbers of males. Similar amounts of oxamyl applied to the soil as a drench or as granules controlled M. hapla more effectively than foliar sprays but the longer treatment was delayed after infection the fewer the larvae that were killed and the more that became male.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号