首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), detected using 31P NMR spectroscopy, has been used as a measure of the rate of glucose uptake, yet the accuracy of this measurement has not been verified. In this study, isolated rat hearts were perfused with different substrates or isoproterenol for 30 min before measurement of either 2DG6P accumulation or [2-3H]glucose uptake, without and with insulin. Basal contractile function and metabolite concentrations were the same for all hearts. The basal rates of 2DG6P accumulation differed significantly, depending on the preceding perfusion protocol, and were 38-60% of the [2-3H]glucose uptake rates, whereas insulin-stimulated 2DG6P accumulation was the same or 71% higher than the [2-3H]glucose uptake rates. Therefore the ratio of 2DG6P accumulation/[2-3H]glucose uptake rates varied from 0.38 to 1.71, depending on the prior perfusion conditions or the presence of insulin. The rates of 2DG6P hydrolysis were found to be proportional to the intracellular 2DG6P concentrations, with a K(m) of 17.5mM and V(max) of 1.4 micromol/g dry weight/min. We conclude that the rates of 2DG6P accumulation do not accurately reflect glucose uptake rates under all physiological conditions in the isolated heart and should be used with caution.  相似文献   

2.
Ischemia is reported to stimulate glucose uptake, but the signaling pathways involved are poorly understood. Modulation of glucose transport could be important for the cardioprotective effects of brief intermittent periods of ischemia and reperfusion, termed ischemic preconditioning. Previous work indicates that preconditioning reduces production of acid and lactate during subsequent sustained ischemia, consistent with decreased glucose utilization. However, there are also data that preconditioning enhances glucose uptake. The present study examines whether preconditioning alters glucose transport and whether this is mediated by either phosphatidylinositol 3-kinase (PI3K) or p38 MAP kinase. Langendorff-perfused rat hearts were preconditioned with 4 cycles of 5 min of ischemia and 5 min of reperfusion, with glucose as substrate. During the last reflow, glucose was replaced with 5 mM acetate and 5 mM 2-deoxyglucose (2DG), and hexose transport was measured from the rate of production of 2-deoxyglucose 6-phosphate (2DG6P), using (31)P nuclear magnetic resonance. Preconditioning stimulated 2DG uptake; after 15 min of perfusion with 2DG, 2DG6P levels were 165% of initial ATP in preconditioned hearts compared with 96% in control hearts (p < 0.05). Wortmannin, an inhibitor of PI3K, did not block the preconditioning induced stimulation of 2DG6P production, but perfusion with SB202190, an inhibitor of p38 MAP kinase, did attenuate 2DG6P accumulation (111% of initial ATP, p < 0. 05 compared with preconditioned hearts). SB202190 had no effect on 2DG6P accumulation in nonpreconditioned hearts. Preconditioning stimulation of translocation of GLUT4 to the plasma membrane was not inhibited by wortmannin. The data demonstrate that ischemic preconditioning increases hexose transport and that this is mediated by p38 MAP kinase and is PI3K-independent.  相似文献   

3.
An enzymatic assay adapted to photometric analysis with 96-well microplates was evaluated for the measurement of 2-deoxyglucose (2DG) uptake in insulin-responsive tissues and differentiated 3T3-L1 adipocytes. For in vivo measurements, a small amount of nonradiolabeled 2DG was injected into mice without affecting glucose metabolism. For photometric quantification of the small amount of 2-deoxyglucose 6-phosphate (2DG6P) that accumulates in cells, we introduced glucose-6-phosphate dehydrogenase, glutathione reductase, and 5,5′-dithiobis(2-nitrobenzoic acid) to the recycling amplification reaction of NADPH. We optimized the enzyme reaction for complete oxidation of endogenous glucose 6-phosphate (G6P) and glucose in mouse tissues in vivo and serum as well as in 3T3-L1 adipocytes in vitro. All reactions are performed in one 96-well microplate by consecutive addition of reagents, and the assay is able to quantify 2DG and 2DG6P in the range of 5–80 pmol. The results obtained with the assay for 2DG uptake in vitro and in vivo in the absence or presence of insulin stimulation was similar to those obtained with the standard radioisotopic method. Thus, the enzymatic assay should prove to be useful for measurement of 2DG uptake in insulin-responsive tissues in vivo as well as in cultured cells.  相似文献   

4.
We investigated a nonradioisotope method for the evaluation of glucose uptake activity using enzymatic measurement of 2-deoxyglucose 6-phosphate (2DG6P) content in isolated rat soleus muscle in vitro and in vivo. The 2DG6P content in isolated rat soleus muscle after incubation with 2-deoxyglucose (2DG) was increased in a dose-dependent manner by insulin (ED(50) = 0.6 mU/ml), the maximum response being about 5 times that of the basal content in vitro. This increment was completely abolished by wortmannin (100 nM), with no effect on basal 2DG6P content. An insulin-mimetic compound, vanadium, also increased 2DG6P content in a dose-dependent manner. In isolated soleus muscle of Zucker fa/fa rats, well known as an insulin-resistant model, insulin did not increase 2DG6P content. The 2DG6P content in rat soleus muscle increased after 2DG (3 mmol/kg) injection in vivo, and conversely, the 2DG concentration in plasma was decreased in a dose-dependent manner by insulin (ED(50) = 0.11 U/kg). The maximum response of the accumulation of 2DG6P in soleus muscle was about 4 times that of the basal content. This method could be useful for evaluating glucose uptake (transport plus phosphorylation) activity in soleus muscle in vitro and in vivo without using radioactive materials.  相似文献   

5.
To determine 2-deoxy-D-glucose (2DG) and 2-deoxy-D-glucose 6-phosphate (DG6P) in mouse tissue after injection of 2DG, we have developed a novel assay. This assay is a simple procedure involving incubation of samples with four independent, single reaction mixtures followed by measurement of fluorescence. From differences between the values obtained with the four reactions, each of glucose, glucose 6-phosphate, 2DG and DG6P were able to be quantified in a sensitive manner. Using this assay system, glucose and 2DG in blood and DG6P-accumulation in muscle were easily determined. Therefore, this assay may be useful for measuring in vivo glucose uptake without the use of radioisotopes.  相似文献   

6.
Enzymatic assays for 2-deoxyglucose and 2-deoxyglucose 6-phosphate   总被引:4,自引:0,他引:4  
Methods for 2-deoxyglucose (2-DG) and 2-deoxyglucose 6-phosphate (DG6P) are described which are based on the fact that DG6P is oxidized by glucose-6-phosphate dehydrogenase (G6PDH), but at a rate 1000-fold slower than for glucose 6-phosphate, whereas hexokinase phosphorylates 2DG and glucose at comparable rates. Therefore, by adding the two enzymes in a suitable order, and in appropriate concentrations, 2DG, glucose, DG6P, and glucose 6-P can all be separately measured. To avoid a side reaction from the use of a high level of G6PDH, when measuring DG6P, glucose is first removed with glucose oxidase plus aldose reductase.  相似文献   

7.
We studied the uptake of 2-deoxy-D-glucose (2DG) and the synthesis of its phosphorylated product 2DG-6-phosphate (2DG-6P) by the retinas of the clawed frog (Xenopus laevis) and the bullfrog (Rana catesbeiana). Autoradiographs showed that most of the retinal 2DG uptake is by the photoreceptor layer. The 2DG accumulation by isolated Xenopus retinas was time and concentration dependent. The Kt for transport was 5.05 mM; Vmax was 6.99 X 10(-10) mol . mg-1 tissue wet weight min-1. The Km for 2DG-6P formation was estimated to be 2-3 mM and Vmax to be approximately 4 x 10(-9) mol . mg-1 min-1. 2DG uptake was inhibited competitively by glucose with a Ki of 2.29 mM. Exposure to light reduced 2DG uptake by no more than 10% as compared with dark uptake. Low sodium or ouabain (10(-4)-10(-7) M) treatment did not significantly alter 2DG uptake as compared with control retinas. In experiments upon intact, anesthetized bullfrogs, light reduced both the total amount of radioactivity acquired by the retina and the fraction of 2DG-6P present. The results are discussed in terms of the fraction of energy consumed by the retina required to maintain the photoreceptor dark current.  相似文献   

8.
W Chen  M Guéron 《Biochimie》1992,74(9-10):867-873
The glucose analog, 2-deoxy-D-glucose (2DG), has been used widely for studying the initial steps in the metabolism of glucose by radio-isotope tracer methods and by 31P NMR. In the rat heart perfused with acetate/2DG (both 5 mM) plus insulin, trapping of phosphorus by 2-deoxy-D-glucose-6-phosphate (2DG6P) results in a steady state exhibiting high 2DG6P (55 mM) and low ATP concentrations but near-normal function, as observed in an earlier 31P NMR study. In order to understand how the 2DG6P concentration is stabilized, we studied the inhibition of a mammalian hexokinase by 2DG6P in vitro by a 31P NMR technique. Inhibition, previously unobserved, was found. It is similar to inhibition by G6P in that it is competitive with ATP and not competitive with 2DG, but the inhibition constant (1.4 mM) is much larger. The experimental protocol includes provisions for enzymatic destruction of stray inhibitors such as G6P. The results show that the high 2DG6P and low ATP concentrations found in the steady state of the perfused heart should strongly reduce the rate of phosphorylation of sugars by hexokinase.  相似文献   

9.
We studied the uptake of [3H]2-deoxyglucose [( 3H]2DG) by slices of rat cerebral cortex in vitro as a model of glucose transport by brain. Slices were incubated with [3H]2DG, or with L-[3H]glucose as a marker for diffusion; the difference between [3H]2DG uptake and L-[3H]glucose uptake was defined as net [3H]2DG transport. Net [3H]2DG transport was a function of incubation temperature, with an estimated temperature coefficient of 1.87 from 15 degrees C to 25 degrees C. The net uptake of [3H]2DG was not inhibited by phlorizin or phloretin in concentrations well above the reported Ki of these inhibitors for hexose uptake in other systems. To examine the hypothesis that [3H]2DG transport by brain slices is dependent on mitochondrial energy, we studied net [3H]2DG uptake by slices which had been preincubated in media designed to alter intracellular ATP stores. The transport process was very sensitive to inhibition by DNP, but the correlation between [3H]2DG transport and ATP levels was unclear. In contrast to our published hypothesis that the transport process required mitochondrial energy, these data indicate that dependence on energy is not absolute.  相似文献   

10.
A nonradioisotope, 96-well-microplate assay to evaluate glucose uptake activity in cultured cells has been developed. 2-Deoxyglucose (2DG) was detected by measuring a potent fluorophore, resorufin, generated after incubation with a single assay solution containing hexokinase, adenosine 5'-triphosphate, glucose 6-phosphate dehydrogenase, beta-nicotineamide adenine dinucleotide phosphate, diaphorase, and resazurin. This amplifying detection system could detect the fluorescence intensity induced by uptake of 2DG into L6 skeletal muscle cells, even at the level of cells cultivated in individual wells in a 96-well microplate. Using this assay system, the effects of insulin, cytochalasin B (hexose uptake inhibitor), LY294002 (inhibitor of glucose transporter translocation), and pioglitazone hydrochloride (insulin-sensitizing agent) on 2DG uptake into L6 myotubes could be assessed clearly. Therefore, our simple method may be useful for in vitro high-throughput screening and for evaluating regulators of glucose uptake.  相似文献   

11.
Brain Slice Glucose Utilization   总被引:3,自引:3,他引:0  
The metabolism of 2-deoxyglucose has been studied in 540 micron and 1,000 micron hypothalamic brain slices. Slice 2-deoxyglucose (2DG) and 2-deoxyglucose-6-phosphate (2DG6P) levels were measured after tissue homogenization and perchloric acid extraction. By analyzing the uptake and washout kinetics with nonlinear least-squares methods, we have determined the rate constants for three-, four-, or five-parameter kinetic models and obtained a value for the in vitro lumped constant (LC). The kinetic analysis reveals a small, slowly decaying, 2DG component that is not predicted by any of the models. If this component is treated as a separate, parallel compartment, then the four- and five-parameter models are essentially equivalent. To compare our data to prior in vivo data, we combined 2DG and 2DG6P to produce Ci*, the total slice radioactivity, and analyzed the first 45 min of uptake. These data were fit best by a three-parameter model and the slowly decaying pool was not identified. Calculation of glucose utilization from total tissue radioactivity, measured by whole slice homogenization and by image analysis of autoradiograms, showed excellent correlation between the two methods. Image analysis of radioactivity in the suprachiasmatic nucleus, which is present in these slices, revealed a spontaneous diurnal variation in in vitro glucose utilization in close quantitative agreement with prior in vivo measurements. The kinetic analysis of the 1,000 micron slice was qualitatively similar to that of the 540 micron slice but revealed an increase in the LC and a large decrease in k1 as well as the expected large increase in the hexokinase rate constant, k3. Overall, in vitro glucose utilization increased by about 60%. These results are consistent with our prior studies of the 1,000 micron slice and support our interpretation that the 1,000 micron slice is an excellent in vitro model for brain ischemia without infarction.  相似文献   

12.
Glucose uptake across the plasma membrane in animal cells plays a crucial role in whole-body glucose homeostasis. Insulin-stimulated glucose transport activity in vivo in several tissues was estimated using the 2-deoxy-D-[1-(3)H]glucose ([(3)H]2DG) uptake determination method. A tracer dose of [(3)H]2DG was injected intravenously into 8-day-old chicks (Gallus gallus) administered simultaneously or previously with porcine insulin (40 microg/kg BW). After 10 or 20 min, several major tissues, including skeletal and cardiac muscle, were sampled and their 2-deoxy-D-[1-(3)H]glucose 6-phosphate content analyzed. Plasma glucose concentration and [(3)H]2DG radioactivity were lowered by insulin within 20 min of [(3)H]2DG administration, while the plasma [(3)H]2DG/glucose ratio was not significantly different between chicks injected with insulin and their control counterparts. A marked uptake of 2DG was observed in cardiac tissue and brain, followed by kidney and skeletal muscles. In skeletal muscles, insulin increased the 2DG uptake in soleus, extensor digitorum longus and pectoralis superficialis muscles. On the other hand, no significant increases in insulin-induced 2DG uptake were detected in cardiac muscle or adipose tissue compared to controls. The results show that glucose transport across the plasma membrane in vivo in most skeletal muscles tested, but not cardiac muscle, was increased by insulin administration to chicks. These findings suggest that an insulin-responsive glucose transport mechanism is present in chickens, even though they intrinsically lack GLUT4 homologous gene, the insulin-responsive glucose transporter in mammals.  相似文献   

13.
A nontracer amount (0.25 mmol/kg of body weight) of 2-deoxyglucose (DG) was intravenously injected into rats, which were frozen 2 and 4 min later in liquid nitrogen. Freeze-dried samples of CNS regions and cell bodies of spinal motor neurons were prepared, and the concentrations of glucose, glucose 6-phosphate, DG, and DG 6-phosphate (DG6P) in them were microassayed after 3,000-1,500,000-fold amplification using an enzymatic amplification reaction, NADP cycling. Based on the time course of glucose, DG, and DG6P concentrations in arterial plasma and the anterior horn of the spinal cord, the Sokoloff-type rate equations for DG and DG6P concentrations were mathematically solved, and the resultant DG and DG6P concentration functions were fitted to the data points using the nonlinear least-squares fitting SALS package program. This fitting provided four rate constants for the functions and supported the theoretical basis for our calculations of glucose utilization rate (GUR) when DG was administered in nontracer amounts. The GUR was highest in the spinal motor neurons and lowest in the white matter of the cerebellum. Neuron-rich structures, such as the cerebellar molecular and granular layers and the anterior horn of the spinal cord, had higher GUR values than the white matter of the cerebellum and spinal cord.  相似文献   

14.
A well known glucose antimetabolite, 2-deoxy glucose (2DG) widely used in chemotherapy of cancer along with radiation, was evaluated as an antifilarial agent by nuclear magnetic resonance. The uptake and metabolism of 2DG in the experimental filarial infection Acanthocheilonema viteae was studied by in vivo multinuclear NMR. An unusually long retention time of 2DG6P within these parasites was observed on continuous 31P NMR monitoring, along with a decrease in ATP levels. These results led to therapeutic investigation in A. viteae infected host Mastomys coucha. 2DG showed a remarkable adulticidal activity (73.6%) with 50% sterilization of surviving female worms at a dose of 250 mg/kg x 5, p.o. NMR observations and activity profile substantiate the findings of one another, directed towards the hitting of bioenergetic machinery of A. viteae by macrofilaricidal agent (2DG).  相似文献   

15.
Experimental evidence indicated that: 1) [14C]deoxyglucose-6-phosphate (14C-DG-6-P) in brain (and other rat tissues) did not increase with time after injection of14C-DG, 2)14C-DG-6-P in rat brain (and other tissues) did not correlate with glucose metabolism 3)14C-DG-6-P in rat brain (and other tissues) had a significant negative correlation with glucose-6-phosphatase activity. Further, arterio-venous studies in rats, in which the cerebral uptake and metabolism of labeled glucose were compared directly with those of labeled DG (and labeled fluorodeoxyglucose, FDG), employing double labeled techniques, showed that DG (and FDG) cannot be used to measure glucose uptake and/or metabolism.  相似文献   

16.
2-deoxyglucose is a glucose analog that impacts many aspects of cellular physiology. After its uptake and its phosphorylation into 2-deoxyglucose-6-phosphate (2DG6P), it interferes with several metabolic pathways including glycolysis and protein N-glycosylation. Despite this systemic effect, resistance can arise through strategies that are only partially understood. In yeast, 2DG resistance is often associated with mutations causing increased activity of the yeast 5’-AMP activated protein kinase (AMPK), Snf1. Here we focus on the contribution of a Snf1 substrate in 2DG resistance, namely the alpha-arrestin Rod1 involved in nutrient transporter endocytosis. We report that 2DG triggers the endocytosis of many plasma membrane proteins, mostly in a Rod1-dependent manner. Rod1 participates in 2DG-induced endocytosis because 2DG, following its phosphorylation by hexokinase Hxk2, triggers changes in Rod1 post-translational modifications and promotes its function in endocytosis. Mechanistically, this is explained by a transient, 2DG-induced inactivation of Snf1/AMPK by protein phosphatase 1 (PP1). We show that 2DG-induced endocytosis is detrimental to cells, and the lack of Rod1 counteracts this process by stabilizing glucose transporters at the plasma membrane. This facilitates glucose uptake, which may help override the metabolic blockade caused by 2DG, and 2DG export—thus terminating the process of 2DG detoxification. Altogether, these results shed a new light on the regulation of AMPK signaling in yeast and highlight a remarkable strategy to bypass 2DG toxicity involving glucose transporter regulation.  相似文献   

17.
A new approach to the study of glucose phosphorylation in brain slices is described. It is based on timed incubation with nonradioactive 2-deoxyglucose (DG), after which the tissue levels of DG and 2-deoxyglucose-6-phosphate (DG6P) are measured separately with sensitive enzymatic methods applied to specific small subregions. The smallest samples had dry weights of approximately 0.5 microgram. Direct measurements in different regions of hippocampal slices showed that within 6 min after exposure to DG, the ratios of DG to glucose in the tissue were almost the same as in the incubation medium, which simplifies the calculation of glucose phosphorylation rates and increases their reliability. Data are given for ATP, phosphocreatine, sucrose space, and K+ in specific subregions of the slices. DG6P accumulation proceeded at a constant rate for at least 10 min, even when stimulated by 10 mM glutamate in the medium. The calculated control rate of glucose phosphorylation was 2 mmol/kg (dry weight)/min. In the presence of 10 mM glutamate it was twice as great. The response to 10 mM glutamate of different regions of the slice was not uniform, ranging from 164% of control values in the molecular layer of CA1 to 256% in the stratum radiatum of CA1. There was a profound fall in phosphocreatine levels (75%) in response to 10 mM glutamate despite a 2.4-fold increase in glucose phosphorylation. Even in the presence of 1 mM glutamate, the increase in glucose phosphorylation (50%) was not great enough to prevent a significant drop in phosphocreatine content.  相似文献   

18.
JB6 mouse epidermal cells have been selected for resistance to the tumor-promoting phorbol diester TPA for (1) the plateau density mitogenic (M) response, and (2) the promotion of tumor cell phenotype (P) response. The purpose of this study was to determine the relationship of hexose uptake to the two TPA-dependent processes. Monolayers of JB6 mouse epidermal cells showing one of four different phenotypes (M + P+, M + P?, M? P+, M? P?) were exposed to 60 nM [3H(G)]2 deoxy-D-glucose (2DG) with or without TPA (10 ng/ml) stimulation. The TPA mitogen-sensitive (M + P +/?) cells, when in logarithmic growth, had a lower basal 2DG uptake rate than TPA mitogen-resistant (M? P +/?) cells. At plateau density, however, only the M+P+ cells had a significantly lower basal rate. The M + (TPA mitogen-sensitive) cells (with low basal rates), when preincubated with TPA, exhibited a two to threefold increase in 2DG uptake, while the M? (TPA mitogen-resistant) lines, which already showed elevated rates, remained unchanged. There was also a positive association between TPA mitogen sensitivity and slower growth rate. These results suggest that low hexose sugar uptake is related to TPA mitogen sensitivity, but not to promotion sensitivity. Hence the cell's ability to increase its uptake rate may be required for the cells to respond to mitogenic stimulation by TPA.  相似文献   

19.
We have developed a rapid nonradioisotope chemiluminescent assay adapted to high-throughput screening experiments, to evaluate glucose uptake activity in cultured cells. For chemiluminescence quantification of 2-deoxyglucose, we used a luminol oxidation reaction after an enzymatic dephosphorylation of 2-deoxyglucose-6-phosphate. All reactions were performed at 37 °C by consecutive addition of reagents, and the assay is able to quantify 2DG in picomole per well. To confirm the reliability of this method, we have evaluated the dose–effect of insulin, GLUT4 inhibitors and insulin-sensitizing agent on 2DG uptake into 3T3-L1 cells. The results obtained with the assay for 2DG uptake in vitro in the absence or presence of insulin stimulation, were similar to those obtained by the previous radioisotopic and enzymatic methods. We have also used this assay to evaluate the effect of various reactive carbonyl and oxygen species on insulin-stimulated 2DG-uptake into adipocytes. All reactive carbonyl species tested decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner without affecting basal glucose uptake in 3T3-L1 cells. 4-hydroxynonenal was found to be the most potent in the impairment of glucose uptake. This new enzymatic chemiluminescent assay is rapid and useful for measurement of 2DG uptake in insulin-responsive in cultured cells.  相似文献   

20.
Exposure of quiescent cultures of human gingival fibroblasts (HuGi) and porcine synovicocytes (PSF) to human recombinant interleukin 1 alpha or -beta (IL1 alpha and -beta) enhanced the rate of glycolysis as judged by increased lactate production. The cytokines also increased uptake of [3H]2-deoxyglucose (DG) in a time- and dose-dependent manner. Stimulation of DG uptake was first evident 6-8 h following addition of IL1 and was maximal by 24-30 h. IL1 alpha and -beta were equipotent. Half-maximal stimulation occurred at approximately 1 pM IL1; maximal stimulation (2.5-4.5-fold in HuGi, 3-7-fold in PSF) was obtained with approximately 80 pM IL1. The dose-response curves for lactate production and DG uptake were similar. Increased DG uptake was blocked by specific antisera to IL1 and by inhibitors of protein and RNA synthesis but not by indomethacin, an inhibitor of prostaglandin production. DG uptake was enhanced by IL1 in serum-starved cells in the presence of neutralizing anti-platelet-derived growth factor serum. The effect was therefore not secondary to prostaglandin or platelet-derived growth factor production. No increase in cell cycling was detected in IL1-treated cells under the experimental conditions. Kinetic analysis revealed that the Vmax for DG uptake was increased by IL1 (from 36 to 144 pmol/min/mg of cell protein), whereas the Km was unchanged. HuGi cells were pulse-labeled with [35S]methionine following exposure to IL1. Cell lysates were immunoprecipitated using a specific antiserum raised against human erythrocyte glucose transporter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography of these immunoprecipitates revealed dose- and time-dependent increases in the net rate of glucose transporter synthesis which mirrored the changes in DG uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号