首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium-sensing receptor (CASR), a plasma membrane G-protein coupled receptor, is expressed in parathyroid gland and kidney, and controls systemic calcium homeostasis. Inactivating CASR mutations have previously been identified in patients with familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). The aim of the present study is to determine the underlying molecular defect of FHH/NSHPT disease in a consanguineous Tunisian family. Mutation screening was carried out using RFLP-PCR and direct sequencing. We found that the proband is homozygous for a novel 15 bp deletion in the exon 7 (c.1952_1966del) confirming the diagnosis of NSHPT. All the FHH members were found to be heterozygous for the novel detected mutation. The mutation, p.S651_L655del, leads to the deletion of 5 codons in the second trans-membrane domain of the CASR which is thought to be involved in the processes of ligand-induced signaling. This alteration was associated with the evidence of mental retardation in the FHH carriers and appears to be a novel inactivating mutation in the CASR gene. Our findings provide additional support for the implication of CASR gene in the FHH/NSHPT pathogenesis.  相似文献   

2.
Thakker RV 《Cell calcium》2004,35(3):275-282
The human calcium-sensing receptor (CaSR) is a 1078 amino acid cell surface protein, which is predominantly expressed in the parathyroids and kidney, and is a member of the family of G protein-coupled receptors. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium reabsorption in response to alterations in extracellular calcium concentrations. The human CaSR gene is located on chromosome 3q21.1 and loss-of-function CaSR mutations have been reported in the hypercalcaemic disorders of familial benign (hypocalciuric) hypercalcaemia (FHH, FBH or FBHH) and neonatal severe primary hyperparathyroidism (NSHPT). However, some individuals with loss-of-function CaSR mutations remain normocalcaemic. In addition, there is genetic heterogeneity amongst the forms of FHH. Thus, the majority of FHH patients have loss-of-function CaSR mutations, and this is referred to as FHH type 1. However, in one family, the causative gene for FHH is located on 19p13, referred to as FHH type 2, and in another family it is located on 19q13, referred to as FHH type 3. Gain-of-function CaSR mutations have been shown to result in autosomal dominant hypocalcaemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations, and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with three hypercalcaemic and three hypocalcaemic disorders.  相似文献   

3.
Liu J  Lv F  Sun W  Tao C  Ding G  Karaplis A  Brown E  Goltzman D  Miao D 《PLoS genetics》2011,7(9):e1002294
Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.  相似文献   

4.
The calcium-sensing receptor (CASR), a member of the G-protein coupled receptor family, is expressed in both parathyroid and kidney, and aids these organs in sensing extracellular calcium levels. Inactivating mutations in the CASR gene have been described in familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). Activating mutations in the CASR gene have been described in autosomal dominant hypoparathyroidism and familial hypocalcemia. The human CASR gene was mapped to Chromosome (Chr) 3q13.3-21 by fluorescence in situ hybridization (FISH). By somatic cell hybrid analysis, the gene was localized to human Chr 3 (hybridization to other chromosomes was not observed) and rat Chr 11. By interspecific backcross analysis, the Casr gene segregated with D16Mit4 on mouse Chr 16. These findings extend our knowledge of the synteny conservation of human Chr 3, rat Chr 11, and mouse Chr 16.  相似文献   

5.
We report five novel mutations in the human Ca2+-sensing-receptor gene that cause familial hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism. Each gene defect is a missense mutation (228Arg→Gln, 139Thr→Met, 144Gly→Glu, 63Arg→Met, and 67Arg→Cys) that encodes a nonconservative amino acid alteration. These mutations are each predicted to be in the Ca2+-sensing receptor's large extracellular domain. In three families with FHH linked to the Ca2+-sensing-receptor gene on chromosome 3 and in unrelated individuals probands with FHH, mutations were not detected in protein-coding sequences. On the basis of these data and previous analyses, we suggest that there are a wide range of mutations that cause FHH. Mutations that perturb the structure and function of the extracellular or transmembrane domains of the receptor and those that affect noncoding sequences of the Ca2+-sensing-receptor gene can cause FHH.  相似文献   

6.
Cerebral arterial myogenic and autoregulatory responses are impaired in Fawn Hooded hypertensive (FHH) rats. Cerebral autoregulatory responses are restored in the congenic rat strain in which a segment of chromosome 1 from the Brown Norway (BN) rat was transferred into the FHH genetic background (FHH.1BN). The impact of this region on cerebral arterial dilator responses remains unknown. Aminopeptidase is a gene that was transferred into the FHH genetic background to generate the FHH.1BN rats and is responsible for degradation of the vasodilator bradykinin. Thus, we hypothesized that FHH rats will have increased aminopeptidase P levels with impaired cerebral arterial responses to bradykinin compared to BN and FHH.1BN rats. We demonstrated higher cerebral arterial expression of aminopeptidase P in FHH compared to BN rats. Accordingly, we demonstrated markedly impaired cerebral arterial dilation to bradykinin in FHH compared to BN rats. Interestingly, aminopeptidase P expression was lower in FHH.1BN compared to FHH rats. Decreased aminopeptidase P levels in FHH.1BN rats were associated with increased cerebral arterial bradykinin-induced dilator responses. Aminopeptidase P inhibition by apstatin improved cerebral arterial bradykinin dilator responses in FHH rats to a level similar to FHH.1BN rats. Unlike bradykinin, cerebral arterial responses to acetylcholine were similar between FHH and FHH.1BN groups. These findings indicate decreased bradykinin bioavailability contributes to impaired cerebral arterial dilation in FHH rats. Overall, these data indicate an important role of aminopeptidase P in the impaired cerebral arterial function in FHH rat.  相似文献   

7.
We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5) were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO) rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2), were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats.  相似文献   

8.
Liang X  Luo XL  Zhong H  Hu QH  He F 《生理学报》2012,64(3):289-295
To investigate the effect of Ca(2+)-sensing receptor (CaR) on Spermine-induced extracellular Ca(2+) influx and NO generation in human umbilical vein endothelial cells (HUVEC), the small interference RNA (siRNA) specifically targeting CaR gene was designed, synthesized and transfected into HUVEC according to the cDNA sequence of human CaR gene in GenBank. The transfection efficiency and the interference efficiency of CaR protein were determined by laser scanning confocal microscopy and Western blot, respectively. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by Fura-2/AM loading. The production of NO and the activity of endothelial nitric oxide synthase (eNOS) were determined by the DAF-FM diacetate (DAF-FM DA). Western blot results demonstrated that siRNA targeting the CaR specifically decreased the expression of CaR protein in CaR siRNA group 48 h after transfection (P < 0.05). At the same time, the Spermine-induced [Ca(2+)](i), eNOS activity and NO generation were also significantly reduced (P < 0.05) in CaR siRNA group compared with those in the untransfected or negative siRNA transfected group. In conclusion, the present study suggests that the CaR plays an important role in the Spermine-evoked process of extracellular Ca(2+) influx and NO generation in HUVEC.  相似文献   

9.
The agonist sensitivity of the calcium-sensing receptor (CaR) can be altered by protein kinase C (PKC), with CaR residue Thr(888) contributing significantly to this effect. To determine whether CaR(T888) is a substrate for PKC and whether receptor activation modulates such phosphorylation, a phospho-specific antibody against this residue was raised (CaR(pT888)). In HEK-293 cells stably expressing CaR (CaR-HEK), but not in cells expressing the mutant receptor CaR(T888A), phorbol ester (PMA) treatment increased CaR(pT888) immunoreactivity as observed by immunoblotting and immunofluorescence. Raising extracellular Ca(2+) concentration from 0.5 to 2.5 mM increased CaR(T888) phosphorylation, an effect that was potentiated stereoselectively by the calcimimetic NPS R-467. These responses were mimicked by 5 mM extracellular Ca(2+) and abolished by the calcilytic NPS-89636 and also by PKC inhibition or chronic PMA pretreatment. Whereas CaR(T888A) did exhibit increased apparent agonist sensitivity, by converting intracellular Ca(2+) (Ca(2+)(i)) oscillations to sustained plateau responses in some cells, we still observed Ca(2+)(i) oscillations in a significant number of cells. This suggests that CaR(T888) contributes significantly to CaR regulation but is not the exclusive determinant of CaR-induced Ca(2+)(i) oscillations. Finally, dephosphorylation of CaR(T888) was blocked by the protein phosphatase 1/2A inhibitor calyculin, a treatment that also inhibited Ca(2+)(i) oscillations. In addition, calyculin/PMA cotreatment increased CaR(T888) phosphorylation in bovine parathyroid cells. Therefore, CaR(T888) is a substrate for receptor-induced, PKC-mediated feedback phosphorylation and can be dephosphorylated by a calyculin-sensitive phosphatase.  相似文献   

10.
We identified the parathyroid type Ca(2+)-sensing receptor (CaR) in normal human colon mucosa and in cancerous lesions at the mRNA and protein level. Polymerase chain reaction produced an amplification product from reverse-transcribed large intestinal RNA which corresponded in size and length to a 537-bp sequence from exon 7 of the CaR gene. With a specific antiserum against its extracellular domain, the CaR could be detected by immunostaining in normal human colon mucosa in cells preferentially located at the crypt base. The CaR protein was also expressed in tumors of the large bowel in all 20 patients examined. However, the great majority of CaR-positive cells in the adenocarcinomas inspected were confined to more differentiated areas exhibiting glandular-tubular structures. Poorly or undifferentiated regions were either devoid of specific immunoreactivity or contained only isolated CaR-positive cells. In the normal mucosa and in glandular-tubular structures of cancerous lesions, the CaR was exclusively expressed in chromogranin A-positive enteroendocrine cells and in only a small fraction of PCNA-positive cells.  相似文献   

11.
The importance of the extracellular calcium-sensing receptor (CaR) in the stringent control of extracellular Ca(2+) concentration is well established. However, the presence of CaR in tissues not directly involved in regulating mineral ion homeostasis such as the epidermis suggests a role for CaR in other cellular functions. Although extracellular Ca(2+) regulates the differentiation of epidermal keratinocytes, the role of CaR in this process in the epidermis is not fully understood. In this study we showed using in situ hybridization and immunohistochemistry that CaR is expressed in suprabasal keratinocytes of the mammalian epidermis. We then evaluated the changes in epidermal keratinocyte morphology and differentiation in Casr(-/-) mice lacking the full-length CaR. These mice show increased expression of an alternatively spliced form of CaR which lacks acute Ca(2+)-signaling properties. The absence of the full-length CaR in the epidermis resulted in ultrastructural changes (abnormal keratohyalin granule formation and precocious lamellar body secretion) in the terminally differentiated granular keratinocytes. Furthermore, the expression of both mRNA and protein for the calcium inducible keratinocyte differentiation markers, filaggrin and loricrin, were down-regulated in the epidermis of Casr(-/-) mice, whereas the number of proliferating cells were increased even though the calcium gradient within the epidermis was enhanced. Our results demonstrate that the epidermal expression of the full-length CaR is required for the normal terminal differentiation of keratinocytes.  相似文献   

12.
The calcium-sensing receptor (CaR) belongs to family C of the G-protein-coupled receptor superfamily. To date 14 activating mutations in CaR showing increased sensitivity to Ca(2+) have been identified in humans with autosomal dominant hypocalcemia. Four of these activating mutations are found in the Ala(116)-Pro(136) region of CaR, indicating that this part of the receptor is particularly sensitive to mutation-induced activation. This region was subjected to random saturation mutagenesis, and 219 mutant receptor clones were isolated and screened pharmacologically in a high throughput screening assay. Selected mutants were characterized further in an inositol phosphate assay. The vast majority of the mutants tested displayed an increased affinity for Ca(2+). Furthermore, 21 of the mutants showed increased basal activity in the absence of agonist. This constitutive activity was not diminished when the mutations were transferred to a chimeric receptor Ca/1a consisting of the amino-terminal domain of the CaR and the 7 transmembrane and intracellular domains of the metabotropic glutamate receptor mGluR1a. CPCCOEt, a noncompetitive antagonist acting at the 7 transmembrane domain of mGluR1a, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR.  相似文献   

13.
Zhong X  Liu J  Lu F  Wang Y  Zhao Y  Dong S  Leng X  Jia J  Ren H  Xu C  Zhang W 《Cell biology international》2012,36(10):937-943
Nuclear Ca2+ plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca2+. We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca2+ release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca2+ oscillations and the spark frequency of nuclear Ca2+ were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca2+ release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca2+ signalling through the IP3R pathway. Interestingly, nuclear Ca2+ was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca2+-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca2+ transient in NRVMs by increasing fractional Ca2+ release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.  相似文献   

14.
《Endocrine practice》2013,19(4):697-702
ObjectiveBecause the clinical features of familial hypocalciuric hypercalcemia (FHH) overlap significantly with those of primary hyperparathyroidism (PHPT), various means of differentiating between the two diseases have been suggested. Here we present a review of the clinical delineation of these two diseases.MethodsReview of the English language literature on FHH and PHPT.ResultsFHH is a rare genetic disorder generally resulting in asymptomatic hypercalcemia of minimal clinical consequence. It is easily misdiagnosed as PHPT because both entities can manifest as hypercalcemia with an inappropriately normal or elevated level of parathyroid hormone. The 2 disorders differ in renal processing of calcium, and a number of indices of renal calcium excretion have been proposed to differentiate the 2 entities. However, the two disorders have considerable overlaps in their ranges on these indices making differentiation a challenge. There are many mutations in the calcium-sensing receptor (CaSR) gene associated with FHH and it is becoming increasingly recognized that the CaSR has broad functional variability.ConclusionThe calcium:creatinine clearance ratio (CCCR) is the consensus biochemical test to differentiate between PHPT and FHH. However, this test is still limited by a considerable indeterminate range, and definitive diagnosis of FHH requires genetic testing. A combination of clinical suspicion, biochemical testing, and genetic analysis is required to differentiate PHPT from FHH and thus spare patients with FHH from nontherapeutic operative treatment. (Endocr Pract. 2013;19:697-702)  相似文献   

15.
The factors controlling the migration of mammalian gonadotropin-releasing hormone (GnRH) neurons from the nasal placode to the hypothalamus are not well understood. We studied whether the extracellular calcium-sensing receptor (CaR) promotes migration/chemotaxis of GnRH neurons. We demonstrated expression of CaR in GnRH neurons in the murine basal forebrain and in two GnRH neuronal cell lines: GT1-7 (hypothalamus derived) and GN11 (olfactory bulb derived). Elevated extracellular Ca(2+) concentrations promoted chemotaxis of both cell types, with a greater effect in GN11 cells. This effect was CaR mediated, as, in both cell types, overexpression of a dominant-negative CaR attenuated high Ca(2+)-stimulated chemotaxis. We also demonstrated expression of a beta-chemokine, monocyte chemoattractant protein-1 (MCP-1), and its receptor, CC motif receptor-2 (CCR2), in the hypothalamic GnRH neurons as well as in GT1-7 and GN11 cells. Exogenous MCP-1 stimulated chemotaxis of both cell lines in a dose-dependent fashion; the effect was greater in GN11 than in GT1-7 cells, consistent with the higher CCR2 mRNA levels in GN11 cells. Activating the CaR stimulated MCP-1 secretion in GT1-7 but not in GN11 cells. MCP-1 secreted in response to CaR stimulation is biologically active, as conditioned medium from GT1-7 cells treated with high Ca(2+) promoted chemotaxis of GN11 cells, and this effect was partially attenuated by a neutralizing antibody to MCP-1. Finally, in the preoptic area of anterior hypothalamus, the number of GnRH neurons was approximately 27% lower in CaR-null mice than in mice expressing the CaR gene. We conclude that the CaR may be a novel regulator of GnRH neuronal migration likely involving, in part, MCP-1.  相似文献   

16.
Extracellular calcium (Ca(2+)(o)) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca(2+)(o) stimulates proliferation of the cells. The effects of Ca(2+)(o) were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca(2+)(o)-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca(2+)(o)-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.  相似文献   

17.
The extracellular calcium-sensing receptor (CaR) was first identified in tissues involved in systemic Ca2+ homeostasis, where it acts to sense changes in circulating Ca2+. It has since been reported that the CaR is expressed in many tissues that are not associated with Ca2+ homeostasis, including the endocrine cells in pancreatic islets of Langerhans. In the present study we have used an insulin-secreting pancreatic beta-cell line (MIN6) to investigate the expression and function of CaR, using the calcimimetic A568, a CaR agonist that activates the CaR at physiological concentrations of extracellular Ca2+ ([Ca2+]o). Immunocytochemistry, Western blotting and RT-PCR confirmed the expression of CaR in MIN6 cells. CaR activation was associated with rapid and transient increases in [Ca2+]o, which were accompanied by the initiation of a marked but transient insulin secretory response. Stimulation of beta-cell secretory activity had no detectable effect on CaR mRNA levels, but CaR mRNA was markedly reduced by configuring MIN6 cells into islet- like structures. Our data are consistent with an important function for the beta-cell CaR in cell - cell communication within islets to co-ordinate insulin secretory responses.  相似文献   

18.
Calcium (Ca(2+)) has long been recognized as a physiologically indispensable ion owing to its numerous intra- and extracellular roles. More recently, it has become apparent that extracellular calcium (Ca(2+)(o)) also serves as an extracellular first messenger following the cloning of a Ca(2+)(o)-sensing receptor (CaR) that belongs to the superfamily of G protein-coupled receptors (GPCR). The CaR probably functions as a dimer in performing its central role of "sensing" minute alterations in Ca(2+)(o) and adjusting the secretion of parathyroid hormone (PTH) so as to normalize Ca(2+)(o) through the actions of PTH on the effector elements of the mineral ion homeostatic system (e.g., kidney, bone and intestine). Several inherited human conditions are caused by inactivating or activating mutations of this receptor, and mice have been generated with targeted disruption of the CaR gene. Characteristic changes in the functions of parathyroid and kidney in patients with these conditions and in CaR-deficient mice have proven the physiological importance of the CaR in mineral ion homeostasis. An accumulating body of evidence, however, suggests that the CaR also plays numerous roles outside the realm of systemic mineral ion homeostasis. The receptor regulates processes such as cellular proliferation and differentiation, secretion, membrane polarization and apoptosis in a variety of tissues/cells. Finally, the availability of specific "calcimimetic", allosteric CaR activators - which are currently in clinical trials - will probably have therapeutic implications for diseases caused by malfunction of the CaR in tissues not only within, but also outside, the mineral ion homeostatic system.  相似文献   

19.
Calcium-sensing receptors (CaR) contribute to regulation of systemic calcium homeostasis by activation of G(q)- and G(i)-linked signaling pathways in the parathyroids, kidney, and intestine. Little is known about the mechanisms regulating CaR synthesis and degradation. Screening of a human kidney yeast two-hybrid library identified the E3 ubiquitin ligase dorfin as a binding partner for the intracellular carboxyl terminus of CaR. Interaction between CaR and dorfin was confirmed by coimmunoprecipitation from HEK293 cells. Ubiquitination of CaR was observed in the presence of the proteasomal inhibitor MG132; mutation of all putative intracellular loop and carboxyl-terminal lysine residues abolished ubiquitination of CaR. Coexpression with dorfin decreased the amount of total CaR protein and increased CaR ubiquitination, whereas a dominant negative fragment of dorfin had opposite effects. The AAA-ATPase p97/valosin-containing protein associates with both CaR and dorfin in HEK293 cells. Treatment with tunicamycin, an inhibitor of N-linked glycosylation, induced the appearance of the unglycosylated 115-kDa CaR form, which was further increased by exposure to MG132, or upon transfection with a dorfin dominant negative construct, suggesting that dorfin-mediated proteasomal degradation of immature CaR occurs from the endoplasmic reticulum. Because endogenous CaR in Madin-Darby canine kidney cells is also subject to degradation from the endoplasmic reticulum, dorfin-mediated ubiquitination may contribute to a general mechanism for CaR quality control during biosynthesis.  相似文献   

20.
Parathyroid gland is the overall regulatory organ within the systemic calcium homeostasis. Through cell surface bound calcium-sensing receptors external calcium inversely regulates release of parathyroid hormone (PTH). This mechanism, which is voltage independent and most sensitive around physiologic calcium concentrations, is regulated through a 120 kDa calcium sensing receptor, CaR. Inherited inactivation of this receptor is the cause for familial hypocalciuric hypercalcemia (FHH). Parallel research identified the 550 kDa glycoprotein megalin, which also is expressed on the parathyroid cell surface, as another potential calcium sensing protein. Although this protein expresses numerous calcium binding sites on its external domain, its main function may be calcium sensitive binding and uptake of steroid hormones, such as 25-OH-vitamin D3 (bound to vitamin D binding protein) and retinol. In hyperparathyroidism (HPT), excessive PTH is secreted and the calcium sensitivity of the cells reduced, i.e. the set-point, defined as the external calcium concentration at which half-maximal inhibition of PTH release occurs, shifted to the right. Pathological cells have reduced expression of both CaR and megalin, and reduced amount of intracellular lipids, possibly including stored steroid hormones. A number of possible genetic disturbances have been identified, indicating multifactorial reasons for the disease. In postmenopausal women, however, the individual group with highest incidence of disease, a causal relation to reduced effect of vitamin D is possible. An incipient renal insufficiency with age, lack of sunshine in the Northern Hemisphere, and an association to the baT haplotype of the vitamin D receptor supports this theory. This review summarizes data on regulation of PTH release, dysregulation in HPT, as well as proliferation of parathyroid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号