首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The elicitor-induced incorporation of phenylpropanoid derivatives into the cell wall and the secretion of soluble coumarin derivatives (phytoalexins) by parsley (Petroselinum crispum L.) suspension cultures can be potentiated by pretreatment of the cultures with 2,6-dichloroisonicotinic acid or derivatives of salicylic acid. To investigate this phenomenon further, the cell walls and an extracellular soluble polymer were isolated from control cells or cells treated with an elicitor from Phytophthora megasperma f. sp. glycinea. After alkaline hydrolysis, both fractions from elicited cells showed a greatly increased content of 4-coumaric, ferulic, and 4-hydroxybenzoic acid, as well as 4-hydroxybenzaldehyde and vanillin. Two minor peaks were identified as tyrosol and methoxytyrosol. The pretreatment effect is most pronounced at a low elicitor concentration. Its specificity was elaborated for coumarin secretion. When the parsley suspension cultures were preincubated for 1 d with 2,6-dichloroisonicotinic, 4- or 5-chlorosalicylic, or 3,5- dichlorosalicylic acid, the cells exhibited a greatly increased elicitor response. Pretreatment with isonicotinic, salicylic, acetylsalicylic, or 2,6-dihydroxybenzoic acid was less efficient in enhancing the response, and some other isomers were inactive. This increase in elicitor response was also observed for the above-mentioned monomeric phenolics, which were liberated from cell walls upon alkaline hydrolysis and for "lignin-like" cell wall polymers determined by the thioglycolic acid method. It was shown for 5-chlorosalicylic acid that conditioning most likely improves the signal transduction leading to the activation of genes encoding phenylalanine ammonia lyase and 4-coumarate: coenzyme A ligase. The conditioning thus sensitizes the parsley suspension cells to respond to lower elicitor concentrations. If a similar mechanism were to apply to whole plants treated with 2,6-dichloroisonicotinic acid, a known inducer of systemic acquired resistance, one can hypothesize that fungal pathogens might be recognized more readily and effectively.  相似文献   

3.
Dark-grown cell suspension cultures of parsley, Petroselinum hortense, produce furanocoumarins after treatment with elicitor preparations of either Phytophthora megasperma f.sp. glycinea (Pmg elicitor) or Alternaria carthami Chowdhury (Ac elicitor). The linear furanocoumarins, psoralen and xanthotoxin, and the benzodipyrandione, graveolone, are the major products synthesized in response to Pmg elicitor, besides small amounts of the furanocoumarin bergapten. Treatment with Ac elicitor induces predominantly the formation of bergapten and the furanocoumarin isopimpinellin, as well as small amounts of graveolone. While Pmg elicitor leads to cell death within a few days, cell mass increased for at least 6 days after treatment with Ac elicitor. Brefeldin A, a phytotoxin produced by A. carthami, inhibits growth of parsley cell suspension cultures considerably at a concentration of 0.01 mM and growth of the cells ceased at a concentration of 0.1 mM toxin. Concomitantly, furanocoumarin biosynthesis was suppressed in our system by a concentration of brefeldin A within 0.01-0.1 mM.  相似文献   

4.
Systemic acquired resistance is an important component of the disease-resistance arsenal of plants, and is associated with an enhanced potency for activating local defense responses upon pathogen attack. Here we demonstrate that pretreatment with benzothiadiazole (BTH), a synthetic activator of acquired resistance in plants, augmented the sensitivity for low-dose elicitation of coumarin phytoalexin secretion by cultured parsley (Petroselinum crispum L.) cells. Enhanced coumarin secretion was associated with potentiated activation of genes encoding Phe ammonia-lyase (PAL). The augmentation of PAL gene induction was proportional to the length of pretreatment with BTH, indicating time-dependent priming of the cells. In contrast to the PAL genes, those for anionic peroxidase were directly induced by BTH in the absence of elicitor, thus confirming a dual role for BTH in the activation of plant defenses. Strikingly, the ability of various chemicals to enhance plant disease resistance correlated with their capability to potentiate parsley PAL gene elicitation, emphasizing an important role for defense response potentiation in acquired plant disease resistance.  相似文献   

5.
Addition of an elicitor preparation from cell walls of Phytophthora megasperma f. sp. glycinea (Pmg elicitor) to a newly established cell suspension culture of Catharanthus roseus induced extracellular free 2,3-dihydroxybenzoic acid, suggesting its role in pathogen defense. The same substance also accumulated intracellularly in a bound form. Treatment of the crude Pmg elicitor preparation with trypsin abolished elicitor activity, suggesting that the active fraction is proteinaceous. The cells became more sensitive to low but not to elevated elicitor concentrations when they were pretreated with 2,6-dichloroisonicotinic (DCIA) or 5-chlorosalicylic (5CSA) acid for about 1 day before addition of the elicitor. This indicates that the elicitor reception/transduction system becomes improved by these compounds known to be related to systemic acquired resistance against plant pathogens. The newly established cell line initially accumulated also the indole alkaloid ajmalicine, a process enhanced by Pmg elicitor. This potency was lost during subculturing for about 1 year and was also not restored by preincubation with DCIA or 5CSA. In contrast, elicitation of 2,3-dihydroxybenzoic acid synthesis was undiminished, suggesting that the Pmg elicitor perception system was still functioning and not the cause for the decline in elicited indole alkaloid production.  相似文献   

6.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

7.
Pretreatment with salicylic acid (SA), an inducer of plant disease resistance, enhanced the capacity of parsley cells for the induction of a rapid K+/pH response and the subsequent coumarin (phytoalexin) secretion. In SA-primed cells, a low elicitor dose induced these two responses to a similar extent as did a high elicitor dose in non-primed cells. These observations suggest that the SA-mediated augmentation of the early K+/pH response may contribute to the enhancement of subsequent coumarin secretion. As the amphotericin B-induced K+/pH response was not enhanced in SA-primed cells, it is concluded that signaling components that are improved by priming are located between elicitor signal perception and the plasma membrane transporters mediating the K+/pH response.  相似文献   

8.
U Conrath  W Jeblick  H Kauss 《FEBS letters》1991,279(1):141-144
An elicitor preparation from fungal cell walls known to induce coumarin synthesis in suspension-cultured parsley cells also elicits a rapid and transient Ca2+ uptake, K+ release and external alkalinization, and increases uptake of 45Ca2+ into the cells. The latter three responses were inhibited by the protein kinase inhibitor K-252a at 0.2 microM. Elicitor-induced coumarin synthesis, a process which requires gene activation, was greatly enhanced by K-252a. These results suggest that protein phosphorylation might be involved in the initial steps of signal transduction as well as in the long-term induction of coumarin synthesis.  相似文献   

9.
Microsomal preparations from parsley cell suspension cultures challenged with an elicitor from Phytophthora megasperma f.sp. glycinea (Pmg) catalyze the formation of trans-5-O-caffeoylshikimate from trans-5-O-(4-coumaroyl)shikimate. Neither the cis isomer nor free 4-coumarate, 4-coumaroyl-CoA, or 5-O-(4-coumaroyl)quinate are substrates for this enzyme. The reaction is strictly dependent on NADPH as a reducing cofactor and on molecular oxygen. NADH, ascorbic acid, and 6,7-dimethyl-5,6,7,8-tetrahydropterine cannot substitute for NADPH. However, NADH enhances enzyme activity observed in the presence of NADPH. Cytochrome c and carbon monoxide inhibit the hydroxylation reaction, suggesting a cytochrome P-450-dependent mixed-function monooxygenase.  相似文献   

10.
Quaternary benzophenanthridine alkaloids (sanguinarine, chelerythrine, chelirubine, chelilutine and macarpine) are specifically induced by cell wall components of Penicillium and Saccharomyces in a colorless strain of Eschscholtzia californica cell suspension cultures. Classical elicitors such as the Phytophthora megasperma elicitor are inactive. The alkaloid synthesis is, however, strongly induced by certain polypeptide antibiotics. Out of 190 tested plant species the yeast elicitor provoked benzophenanthridine synthesis in 13 cultures. One of the branch point enzymes, namely the berberine bridge enzyme, catalysing the formation of (S)-scoulerine from (S)-reticuline, is strongly stimulated during the elicitation process. These results clearly demonstrate the induction of the benzophenanthridine biosynthetic pathway by microbial elicitors.Abbreviations ACC 1-Aminocyclopropane-1-carbonic acid - EDTA Ethylenediaminetetraacetic acid - LS-medium Linsmaier and Skoog medium - Pmg Phytophthora megasperma  相似文献   

11.
Pre-incubation of suspension-cultured parsley cells with methyl jasmonate greatly enhances their ability to respond to fungal elicitors by secretion of coumarin derivatives. The effect is most pronounced at relatively low elicitor concentration and also observed for the incorporation of esterified hydroxycinnamic acids and of "lignin-like" polymers into the cell wall. These three responses correspond to defense reactions induced locally when a fungal pathogen attacks plant cells. In contrast, the conditioning of parsley cells by the signal substance methyl jasmonate is reminiscent of the developmental nature of systemic acquired resistance and renders the cells more effective for the elicitor-induced local defense reactions.  相似文献   

12.
In suspension cultured cells of parsley (Petroselinum crispum), chitosan elicited a rapid deposition of the 1,3-ß-glucan callose on the cell wall and a slower formation of coumarins. With cells remaining in conditioned growth medium, fully N-deacetylated chitosans and partially N-acetylated chitosans were about equally active, the potency increased with the degree of polymerization up to several thousand and addition of reduced glutathione increased the sensitivity of the cells. These results indicate common initial events in the induction of callose and coumarin synthesis although two fully independent metabolic pathways are involved. When the cells were suspended in fresh growth medium, less chitosan was required, and fully N-deacetylated chitosan became the best callose elicitor.Abbreviations DP average degree of polymerization - GSH reduced glutathione - PE pachyman equivalents - Pmg Phytophthora megasperma f. sp.glycinea  相似文献   

13.
The differential response of cultured parsley cells to u.v. irradiation and elicitor treatment is a paradigm for analysis of specific plant defense responses. We demonstrate that freshly isolated parsley protoplasts, in the absence of detectable cell wall, maintain fully the ability to be activated by these important environmental factors. Stimulated protoplasts synthesize typical qualitative patterns and amounts of potentially protective flavonoid glycosides and coumarin phytoalexins following either u.v. irradiation or treatment with fungal elicitor, respectively. Induced accumulation of mRNAs and enzymes of the phenylpropanoid biosynthetic pathways is nearly identical in protoplasts and cells. Stimulation of protoplasts with elicitor requires only a short period of contact, which is not sufficient for cell wall regeneration. Importantly, there is no activation of these pathways during protoplast preparation. These results establish that parsley protoplasts respond appropriately to two physically distinct stimuli and might serve as an especially suitable system for the analysis of signal transduction and gene activation.  相似文献   

14.
Treatment of parsley cell cultures with a fungal elicitor triggered the induction of a lipoxygenase isoform which may be involved in the de novo synthesis of defence-response inducers, such as jasmonic acid or 12-oxo-phytodienoic acid.  相似文献   

15.
Jasmonates have been proposed to be signaling intermediates in the wound and/or elicitor-activated expression of plant defense genes. We used parsley (Petroselinum crispum) cell cultures and transgenic tobacco (Nicotiana tabacum) plants expressing 4CL1-GUS gene fusions to investigate the potential role played by jasmonates in mediating the wound and/or elicitor activation of phenylpropanoid and other defense-related genes. Jasmonates and [alpha]-linolenic acid strongly induced the expression of 4CL in a dose-dependent manner in parsley cells; methyl jasmonate also activated the coordinate expression of other phenylpropanoid genes and the accumulation of furanocoumarin phytoalexins. However, the response of the cells to optimal methyl jasmonate concentrations was distinct quantitatively and qualitatively from the response of elicitor-treated cells. In transgenic tobacco wound-inducible tobacco 4CL genes and a 4CL1 promoter-GUS transgene were responsive to jasmonates and [alpha]-linolenic acid in a dose-dependent manner. Pre-treatment of parsley cells or tobacco leaves with a lipoxygenase inhibitor reduced their responsiveness to the elicitor and to wounding. These results show that the elicitor response in parsley cells can be partially mimicked by jasmonate treatment, which supports a role for jasmonates in mediating wound-induced expression of 4CL and other phenylpropanoid genes.  相似文献   

16.
Siegrist J  Jeblick W  Kauss H 《Plant physiology》1994,105(4):1365-1374
Segments from dark-grown cucumber (Cucumis sativus L.) hypocotyls were used to study defense reactions occurring upon fungal infection and induced by elicitors in the same tissue. The segments were rendered resistant to infection by Colletotrichum lagenarium either by growing the seedlings in the presence of dichloroisonicotinic acid (DCIA) or by preincubation of the cut segments with DCIA, salicylic acid (SA), or 5-chlorosalicylic acid (5CSA). This resistance appears to be due mainly to inhibition of fungal penetration into epidermal cells. In the resistant hypocotyl segments, the fungus induced, at the time of attempted penetration, an increased deposition of phenolics, which were visualized by autofluorescence. These phenolics were located mainly in the epidermal cell wall around and in the emerging papillae below appressoria and were quantified either as lignin-like polymers by the thioglycolic acid method or as 4-OH-benzaldehyde, 4-OH-benzoic, or 4-coumaric acid liberated upon treatment with alkali at room temperature. Pretreatment with DCIA, SA, and 5CSA induced little chitinase activity, but this activity greatly increased in resistant tissues upon subsequent infection. These observations indicate that resistance is associated with an improved perception of the pathogen stimulus resulting in the enhanced induction of diverse defense reactions. When the cut segments were pretreated with DCIA, SA, or 5CSA and then split and incubated with chitosan fragments, the deposition of cell wall phenolics was also enhanced. These pretreated and split segments also exhibited an increase in the rapid production of activated oxygen species induced by an elicitor preparation from Phytophthora megasperma f. sp. Glya. Pretreatment of the segments with methyl jasmonate neither induced resistance nor enhanced induction of cell wall phenolics upon fungal infection, although we observed in the corresponding split segments some increase in chitosan-induced cell wall phenolics and in elicitor-induced rapid production of activated oxygen species.  相似文献   

17.
After elicitation, cell suspension cultures of Catharanthus roseus accumulate phenolic compounds. The major phenolic compound produced was isolated and identified as 2,3-dihydroxybenzoic acid (DHBA). The accumulation of this compound is a rapid response to the addition of elicitor; within 6 h after the addition of elicitor, DHBA concentration reached 6.3 mg/l cell suspension. DHBA was not detected in non-elicited cells. The formation of DHBA in elicited cells was correlated with the induction of the enzyme isochorismate synthase (ICS). Shoot cultures of C. roseus also presented a strong induction of ICS after elicitation. Due to its biological activity, DHBA could play a role in the defence mechanism of C. roseus.  相似文献   

18.
In heterotrophic cell suspensions of sunflower (Helianthus annuusL. cv. Spanners Allzweck) the effect of Pmg elicitor, a fungalelicitor preparation from Phytophthora megasperma f. sp. glycinea,on the induction of chitinase and ß-1,3-glucanaseactivity was studied in relation to changes in ethylene biosynthesis.Dose-response experiments with Pmg elicitor showed that theonset of the induction of intracellular chitinase and ß-1,3-glucanaseactivity coincided or followed a transient rise in ethyleneand particularly endogenous 1-aminocyclopropane-1-carboxylicacid (ACC) levels within 5 h of application. Treatment with5 µg ml–1 elicitor stimulated ethylene and ACC levels1.6-fold and 4-fold, relative to control, respectively. Themolar ratio of ACC to ethylene changed from approximately 3:1in controls to 9:1 in treated cells. During further incubation,ethylene formation and, to a lesser degree, ACC levels declinedand the ACC/ethylene ratio increased to 56:1 in elicitor-treatedcells. On a protein basis, the activities of ß-1,3-glucanaseand chitinase increased approximately 5-fold and 8-fold, respectively,48 h after elicitor application. Additional treatment with theACC synthesis inhibitor aminoethoxyvinyiglycine (AVG) decreasedelicitor-induced enzyme activities and the levels of both ethyleneand ACC. Elicitor effects on chitinase and ß-1,3-glucanaseactivities could be fully restored when ACC was additionallyapplied. Concomitantly, the ACC/ ethylene ratio increased. Neithertreatments with ACC alone, which simultaneously increased internalACC and ethylene levels, nor treatments with AVG alone, whichsimultaneously reduced ACC and ethylene levels, could generallystimulate chitinase or ß-1,3-glucanase activitiesin the cells. It is suggested that ACC functions as a promotingfactor in the induction of chitinase and ß-1,3-glucanaseactivity triggered by Pmg elicitor and appears to reverse aninhibiting influence of ethylene. Key words: 1-Aminocyclopropane-1-carboxylic acid, chitinase, ß-1,3-glucanase, ethylene, Helianthus cellsuspension cultures, Phytophthora megasperma-elicitor  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号