首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison is made between microsomal NADPH-dependent H2O2 production and malondialdehyde (MDA) formation in rat liver microsomes, obtained from phenobarbital pretreated rats. An increase in H2O2 formation was observed during NADPH-dependent disposition (10 min) of 100 μM diazepam (33%) and 2 mM hexobarbital (69%). In contrast orphenadrine (100 μM) and its mono-N-demethylated metabolite tofenacine (100 μM) decreased the H2O2 formation (35% and 55%, respectively). However, all these substrates were found to inhibit NADPH-dependent lipid peroxidation (60 min), estimated by measuring MDA formation, to various extents. These data strongly suggest that the oxidase activity of cytochrome P450 (H2O2 production) is not involved in a rate-limiting step in NADPH-dependent lipid peroxidation.  相似文献   

2.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

3.
Adenylate cyclase activation by GTP analogs   总被引:1,自引:0,他引:1  
Benznidazole (a nitroimidazole derivative used for the treatment of Chagas' disease) is reduced by rat liver microsomes to the nitro anion radical, as indicated by ESR spectroscopy. Addition of benznidazole to rat liver microsomes produced an increase of electron flow from NADPH to molecular oxygen, and generation of both superoxide anion and hydrogen peroxide. The benznidazole-stimulated O2 consumption and O2? formation was greatly inhibited by NADP+ and p-chloromercuribenzoate but not by SKF-525-A and metyrapone. The former inhibitions indicated the involvement of NADPH-cytochrome P-450 (c) reductase, while the lack of inhibition by SKF-525-A and metyrapone ruled out any major role for cytochrome P-450 in benznidazole reduction. In contrast to nifurtimox, a nitrofuran derivative (R. Docampo and A. O. M. Stoppani, 1979, Arch. Biochem. Biophys.197, 317–321), benznidazole was not reduced to the nitro anion radical, nor did it stimulate oxygen consumption, O2? production, and H2O2 generation by Trypanosoma cruzi cells or microsomal fractions. A different mechanism of benznidazole toxicity in T. cruzi and the mammalian host is postulated.  相似文献   

4.
Lactoperoxidase, in the presence of H2O2, I?, and rat liver microsomes, will peroxidize membrane lipids, as evidence by malondialdehyde formation. Fe3+ assists in the formation of malondialdehyde. Fe3+ can be added at the end of the reaction period as well as at the beginning with equal effectiveness, suggesting that it only acts to assist in the conversion of lipid peroxides, previously formed by lactoperoxidase, to malondialdehyde. The addition of EDTA to the microsomal reaction mixture results in a 40% decrease in malondialdehyde formation. The antioxidant butylated hydroxytoluene will completely block the formation of malondialdehyde. Malondialdehyde formation is not dependent upon the production of superoxide, singlet oxygen, or hydroxyl radicals. Peroxidation of membrane lipids by this system is equally effective in both intact microsomes and in liposomes, indicating that iodination of microsomal protein is not required for lipid peroxidation to occur.  相似文献   

5.
After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced oxidative stress: the increased MDA formation by incubated liver preparations, the absorption of conjugated dienes in mitochondrial and microsomal lipids and the decrease in the most unsaturated fatty acids in liver cell membranes are discussed. The formation of carbon-centered (1-hydroxyethyl) and oxygen-centered (hydroxyl) radicals during the metabolism of ethanol is considered: the generation of hydroxyethyl radicals, which occurs likely during the process of univalent reduction of dioxygen, is highlighted and is carried out by ferric cytochrome P450 oxy-complex (P450–Fe3+O2·−) formed during the reduction of heme-oxygen. The ethanol-induced lipid peroxidation has been evaluated, and it has been shown that plasma F2-isoprostanes are increased in ethanol toxicity.  相似文献   

6.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as β-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

7.
The stoichiometry of hydroxylation reactions catalyzed by cytochrome P-450 was studied in a reconstituted enzyme system containing the highly purified cytochrome from phenobarbital-induced rabbit liver microsomes. Hydrogen peroxide was shown to be formed in the reconstituted system in the presence of NADPH and oxygen; the amount of peroxide produced varied with the substrated added. NADPH oxidation, oxygen consumption, and total product formation (sum of hydroxylated compound and hydrogen peroxide) were shown to be equimolar when cyclohexane, benzphetamine, or dimethylaniline served as the substrate. The stoichiometry observed represents the sum of two activities associated with cytochrome P-450. These are (1) hydroxylase activity: NADPH + H+ + O2 + RH → NADP+ + H2O + ROH; and (2) oxidase activity: NADPH + H+ + O2 → NADP+ + H2O2. Benzylamphetamine (desmethylbenzphetamine) acts as a pseudosubstrate in that it stimulates peroxide formation to the same extent as the parent compound (benzphetamine), but does not undergo hydroxylation. Accordingly, when benzylamphetamine alone is added in control experiments to correct for the NADPH and O2 consumption not associated with benzphetamine hydroxylation, the expected 1:1:1 stoichiometry for NADPH oxidation, O2 consumption, and formaldehyde formation in the hydroxylation reaction is observed.  相似文献   

8.
The new technique of spin trapping has been applied to a biological system for the first time. The light induced generation of O2? by chloroplasts in the presence of oxygen has been shown by the production of the O2? adduct of the spin trap 5,5-dimethyl-1-pyrroline-1-oxide. The O2? adduct was detected by electron spin resonance spectroscopy. Methyl viologen enhanced the production of the O2? adduct thus providing support for the hypothes is that methyl viologen accepts electrons from the primary acceptor of photosystem I and subsequently reduces O2 to O2?.  相似文献   

9.
Fluorescent products of lipid peroxidation accumulate with age in microsomal membranes from senescing cotyledons of Phaseolus vulgaris. The temporal pattern of accumulation is closely correlated with a rise in the lipid phase transition temperature reflecting the formation of gel phase lipid. Increased levels of fluorescent peroxidation products are also detectable in total lipid extracts of senescent cotyledons. Lipoxygenase activity increases with advancing age by about 3-fold on a fresh weight basis and 4-fold on a dry weight basis indicating that the tissue acquires elevated levels of lipid hydroperoxides. As well, levels of glutathione and superoxide dismutase activity decline on a dry weight basis as the cotyledons age, rendering the tissue more susceptible to oxidative damage. Catalase activity rises initially and then declines during senescence, but peroxidase activity rises steeply. Thus, apart from this increase in peroxidase, which would scavenge H2O2 only if appropriate cosubstrates were available, the defense mechanisms for coping with activated oxygen species (O2, H2O2, OH) are less effective in the older tissue. The observations support the contention that formation of gel phase lipid in senescing membranes is attributable to lipid peroxidation and suggest that the reactions of lipid peroxidation are utilized by the cotyledons to mediate deteriorative changes accompanying the mobilization and transport of metabolites from the storage tissue to the developing embryo.  相似文献   

10.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

11.
It is postulated that the burst of oxygen consumption and H2O2 formation following phagocytosis by polymorphonuclear leukocytes is due to the action of an oxidase located in the plasma membrane. The cyanide-resistant oxygen consumption of resting polymorphonuclear leukocytes was also found to be stimulated by 2,4-dichlorophenol with H2O2 being the sole product formed. NADH and NADPH added to the leukocytes greatly enhanced the oxygen consumption and were oxidized in the process without penetrating the leukocytes. Mn2+ stimulated this oxidase activity. The apparent Km values for added NADH and NADPH were 50 and 40 μm, respectively, with a V of 300 nmol/mg protein/min. A stoichiometry of 1 mol H2O2 formed per mol of NAD(P)H was found. Whilst the oxidase is similar to the oxidase properties of a peroxidase, myeloperoxidase is not responsible for the activity.  相似文献   

12.
Following oxidative stress, modifications of several biologically important macromolecules have been demonstrated. In this study we investigated the effect of a natural extract from Mangifera indica L (Vimang), its main ingredient mangiferin and epigallocatechin gallate (EGCG) on energy metabolism, energy state and malondialdehyde (MDA) production in a red blood cell system. Analysis of MDA, high energy phosphates and ascorbate was carried out by high performance liquid chromatography (HPLC). Under the experimental conditions, concentrations of MDA and ATP catabolites were affected in a dose-dependent way by H2O2. Incubation with Vimang (0.1, 1, 10, 50 and 100 μg/mL), mangiferin (1, 10, 100 μg/mL) and EGCG (0.01, 0.1, 1, 10 μM) significantly enhances erythrocyte resistance to H2O2-induced reactive oxygen species production. In particular, we demonstrate the protective activity of these compounds on ATP, GTP and total nucleotides (NT) depletion after H2O2-induced damage and a reduction of NAD and ADP, which both increase because of the energy consumption following H2O2 addition. Energy charge potential, decreased in H2O2-treated erythrocytes, was also restored in a dose-dependent way by these substances. Their protective effects might be related to the strong free radical scavenging ability described for polyphenols.  相似文献   

13.
The study was undertaken to evaluate the effect of prior treatment of rats with the antimalarial drugs amodiaquine (AQ) mefloquine (MQ) and halofantrine (HF) on rat liver microsomal lipid peroxidation in the presence of 1 mM FeSO4, 1 mM ascorbate and 0.2 mM H2O2 (oxidants). Ingestion of -tocopheral, a radical chain-breaking antioxidant was also included to assess the role of antioxidants in the drug treatment. In the presence of oxidants AQ, MQ and HF elicited 288%, 175% and 225% increases in malondialdehyde (MDA) formation while the drugs induced 125%, 63% and 31% increases in the absence of oxidants respectively. Similarly, AQ, MQ and HF induced lipid hydroperoxide formation by 380%, 256%, 360% respectively in the presence of oxidants and 172%, 136% and 92% in the absence of exogenously added oxidants respectively. -tocopherol reduced AQ, MQ and HF-induced MDA formation by 40%, 55% and 52% respectively and lipid hydroperoxide formation by 53%, 59% and 54% respectively. Similarly, -tocopherol attenuated the AQ, MQ and HF-induced MDA formation by 49%, 51% and 51% in the presence of oxidants and lipid hydroperoxide formation by 61%, 62% and 47% respectively. The results indicate that rat liver microsomal lipid peroxidation could be enhanced by antimalarial drugs in the presence of reactive oxygen species and this effect could be ameliorated by treatment with antioxidants.  相似文献   

14.
Complete stoichiometry of the reaction catalyzed by ribulose 1,5-bisphosphate (RuBP) oxygenase from spinach and Rhodospirillum rubrum has been determined. Before initiation and after termination, RuBP has been measured either by release of equimolar orthophosphate at 25°C in the presence of 1 n NaOH or by complete carboxylation using 14CO2 and RuBP carboxylase. The RuBP-dependent oxygen consumption has been measured continuously with an oxygen electrode. After termination of catalysis, 3-phosphoglycerate production has been determined spectrophotometrically using phosphoglycerokinase, glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase, α-glycerophosphate dehydrogenase, ATP, and NADH. To measure phosphoglycolate, this product was first hydrolyzed with alkaline phosphatase and the resultant glycolate oxidized by glycolate oxidase. Attendant H2O2 formation catalyzed by peroxidase has then been measured colorimetrically. Interference by ribulose in the measurement of glycolate can be easily corrected. Procedures are rapid and do not require separation of reactants and products. Results are in excellent accord with the expected stoichiometry for catalysis by RuBP oxygenase and also enable an estimate of competing catalysis by RuBP carboxylase.  相似文献   

15.
Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250 µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9–125 µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50 µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.  相似文献   

16.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

17.
The characteristics of PHB production from carbon dioxide by autotrophic culture of Alcaligenes eutrophus ATCC 17697T using a recycled gas closed circuit culture system under the condition of oxygen limitation were investigated. Cell concentration increased to more than 60 g/l after 60 h of cultivation, while the PHB concentration reached 36 g/l. PHB accumulation in the oxygen-limited culture was superior than that in an ammonium-deficient culture. The PHB produced was identified as a homopolymer of d-3-hydroxybutyrate by 1H and 13C NMR analysis. The stoichiometry for PHB production from CO2 under the oxygen limitation condition was indicated to be as follows: 33H2 + 12O2 + 4CO2 → C4H6O2 + 30H2O. This stoichiometry shows that the hydrogen consumption per one mole of CO2 for PHB production is larger than that for cell formation.  相似文献   

18.
Popham PL  Novacky A 《Plant physiology》1991,96(4):1157-1160
Excess active oxygen is generated during the hypersensitive reaction (HR), an incompatible reaction of plants to bacterial pathogens. During HR, lipid peroxidation correlates chronologically with production of the oxygen species, superoxide (O2.−). However, O2.− may not be the active oxygen species that initiates lipid peroxidation. Evidence from other systems suggest that O2.− is converted to the hydroxyl radical (HO.) before lipid peroxidation is initiated. Until recently, HO. could not be detected directly in vivo. This study utilizes a newly reported method to directly detect and quantify the formation of HO. in vivo. Dimethyl sulfoxide (DMSO), used as a molecular probe, is oxidized by HO., forming the stable compound methanesulfinic acid. The methanesulfinic acid can be easily extracted from plant tissues and measured with a colorimetric assay. This study demonstrates significant increases in HO. concentration after simultaneous infiltration of cucumber (Cucumis sativa L.) plants with paraquat and DMSO. The concentration of HO. did not increase significantly when cucumber plants were infiltrated simultaneously with the HR-inducing bacteria, Pseudomonas syringae pv. pisi, and with DMSO. Lipid peroxidation, however, could be measured at times when HO. was not detectable. It appears that HO. is not generated during bacteria-induced HR; therefore, HO. is not responsible for the initiation of lipid peroxidation.  相似文献   

19.
高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响   总被引:6,自引:3,他引:3  
以黄瓜品种‘津春4号’为试材,用叶面喷施的方法,研究了高温胁迫条件下外源褪黑素(melatonin,MT)对黄瓜幼苗活性氧(ROS)代谢的影响.结果表明:外源MT能显著降低高温胁迫下黄瓜叶片超氧阴离子自由基(O2-.)产生速率、过氧化氢(H2O2)含量、电解质漏渗率(relative electric conductivity, REC)及丙二醛(MDA)含量,增强黄瓜幼苗叶片中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,提高抗坏血酸(AsA)、谷胱甘肽(GSH)及可溶性蛋白质含量.说明MT预处理能抑制高温胁迫条件下黄瓜幼苗体内ROS的产生,提高抗氧化酶系的活性及抗氧化物质的含量,降低膜质过氧化水平,保护脂膜的完整性,减少电解质的外渗,减轻高温胁迫对幼苗造成的伤害,提高幼苗抗高温胁迫的能力.  相似文献   

20.
Hyperoxia increases oxygen radical production in rat lung homogenates   总被引:4,自引:0,他引:4  
Lung damage during hyperoxia has been postulated to be due to increased rates of local organ oxygen radical production. Lung homogenate respiration was inhibited with cyanide, and residual respiration was used as an indicator of electron diversion to O2? and H2O2. Cyanide-resistant respiration in lung homogenates, supplemented with 1 mm NADH, increased linearly with oxygen tension, and accounted for 7% of total respiration in air and for 17% of total respiration when homogenates were incubated in 80% oxygen. Exposure of rats to 85% oxygen for 7 days induces tolerance to the lethal effects of 100% oxygen. Rats which previously breathed 85% oxygen for 7 days had a greater CN?-resistant respiration than control rats. This implies that adaptation to hyperoxia does not include decreased lung tissue oxygen radical production as indicated by CN?-resistant respiration. One possible explanation for the increased CN?-resistant respiration in oxygen tolerant rat lungs is that they contain increased cell mass. Lung homogenates of rats exposed to 85% oxygen for 7 days also had 2.5 times greater thiobarbituric acid positive material than controls, indicating that increased lung lipid peroxidation occurs as a consequence of hyperoxia. Incubation of normal rat lung homogenates under hyperoxic conditions also acutely increased lipid peroxidation, which could be inhibited by both superoxide dismutase and catalase. This confirms that hyperoxia enhances cellular production of O2? and H2O2 and implies an essential role for both O2? and H2O2 in hyperoxic lung damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号