首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a temporally incoherent magnetic field noise on microwave-induced DNA single and double strand breaks in rat brain cells was investigated. Four treatment groups of rats were studied: microwave-exposure (continuous-wave 2450-MHz microwaves, power density 1 mW/cm2, average whole-body specific absorption rate of 0.6 W/kg), noise-exposure (45 mG), microwave + noise-exposure, and sham-exposure. Animals were exposed to these conditions for 2h. DNA single- and double-strand breaks in brain cells of these animals were assayed 4h later using a microgel electrophoresis assay. Results show that brain cells of microwave-exposed rats had significantly higher levels of DNA single- and double-strand breaks when compared with sham-exposed animals. Exposure to noise alone did not significantly affect the levels (i.e., they were similar to those of the sham-exposed rats). However, simultaneous noise exposure blocked microwave-induced increases in DNA strand breaks. These data indicate that simultaneous exposure to a temporally incoherent magnetic field could block microwave-induced DNA damage in brain cells of the rat.  相似文献   

2.
The alkaline single cell gel electrophoresis (comet) assay was used to assess in vitro and in vivo genotoxicity of etoposide, a topoisomerase II inhibitor known to induce DNA strand breaks, and chlorothalonil, a fungicide widely used in agriculture. For in vivo studies, rats were sacrificed at various times after treatment and the induction of DNA strand breaks was assessed in whole blood, bone marrow, thymus, liver, kidney cortex and in the distal part of the intestine. One hour after injection, etoposide induced DNA damage in all organs studied except kidney, especially in bone marrow, thymus (presence of HDC) and whole blood. As observed during in vitro comet assay on Chinese hamster ovary (CHO) cells, dose- and time-dependent DNA effects occurred in vivo with a complete disappearance of damage 24 h after administration. Even though apoptotic cells were detected in vitro 48 h after cell exposure to etoposide, such a result was not found in vivo. After chlorothalonil treatment, no DNA strand breaks were observed in rat organs whereas a clear dose-related DNA damage was observed in vitro. The discrepancy between in vivo and in vitro models could be explained by metabolic and mechanistic reasons. Our results show that the in vivo comet assay is able to detect the target organs of etoposide and suggest that chlorothalonil is devoid of appreciable in vivo genotoxic activity under the protocol used.  相似文献   

3.
Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 μsec pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2 W/kg) caused an increase in DNA single- and double-strand breaks in brain cells of the rat when assayed 4 hours post exposure using a microgel electrophoresis assay. In the present study, we found that treatment of rats immediately before and after RFR exposure with either melatonin (1 mg/kg/injection, SC) or the spin-trap compound N-tert-butyl-α-phenylnitrone (PBN) (100 mg/kg/injection, IP) blocks this effect of RFR. Since both melatonin and PBN are efficient free radical scavengers, it is hypothesized that free radicals are involved in RFR-induced DNA damage in the brain cells of rats. Since cumulated DNA strand breaks in brain cells can lead to neurodegenerative diseases and cancer and an excess of free radicals in cells has been suggested to be the cause of various human diseases, data from this study could have important implications for the health effects of RFR exposure. Bioelectromagnetics 18:446–454, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Copper accumulation and induction of DNA strand breaks were investigated in the brain of Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson disease that is a heritable disease of copper accumulation and copper toxicity in the liver, kidney and brain. Copper contents in the brain of LEC rats increased from 20 weeks of age and were approximately 3.5 to 6 folds higher than those in the brain of WKAH rats at 24 weeks of age. Hepatic copper contents in LEC rats increased from 4 to 12 weeks of age in an age-dependent manner, and then decreased from 16 to 20 weeks of age. Thus, we consider that copper accumulated in the liver was released from severely damaged hepatocytes and deposited in the brain, although copper contents in the brain were 1/20-fold lower than those in the liver. We also evaluated the amounts of DNA single-strand breaks (SSBs) in the brain by comet analysis. The proportions of nuclei in the cerebrum and cerebellum without DNA damage decreased, and nuclei with severe DNA damage appeared in LEC rats at 24 weeks of age. The comet scores of cerebrum and cerebellum cells significantly increased in LEC rats and were significantly higher than those in WKAH rats at 24 weeks of age. The results show that SSBs in LEC rat brain cells are induced at a lower concentration of copper than are SSBs in hepatic cells.  相似文献   

5.
Effects of accumulation of copper and iron on induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats that spontaneously develop fulminant hepatitis. Copper and iron accumulated in the liver of LEC rats in an age-dependent manner from 4 to 15 weeks. Low-iron diet prevented the accumulation of iron in the liver, but did not prevent accumulation of copper. The amounts of DNA strand breaks that were estimated by comet assay in the liver cells of rats fed standard diet increased with age from 4 to 15 weeks. No significant differences were observed in the proportions of LEC rat liver cells without tail and the average lengths of tail momentum in the comet images between LEC rats that had been fed standard MF diet and low-iron diet. These results support the idea that accumulation of iron is not directly associated with the induction of DNA damage in the liver cells of LEC rats.  相似文献   

6.
Impact of the comet assay in radiobiology   总被引:1,自引:0,他引:1  
Until the development of single cell gel electrophoresis methods in the 1980s, measurement of radiation-induced DNA strand breaks in individual cells was limited to detection of micronuclei or chromosome breaks that measured the combined effects of exposure and repair. Development of methods to measure the extent of migration of DNA from single cells permitted detection of initial radiation-induced DNA breaks present in each cell. As cells need not be radiolabeled, there were new opportunities for analysis of radiation effects on cells from virtually any tissue, provided a single cell suspension could be prepared. The comet assay (as this method was subsequently named) was able to measure, for the first time, the fraction of radiobiologically hypoxic cells in mouse and human tumors. It was used to determine that the rate of rejoining of DNA breaks was relatively homogenous within an irradiated population of cells. Because individual cells were analyzed, heavily damaged or apoptotic cells could be identified and eliminated from analysis to determine "true" DNA strand break rejoining rates. Other examples of applications of the comet assay in radiobiology research include analysis of the inter-individual differences in response to radiation, effect of hypoxia modifying agents on tumor hypoxic fraction, the role of cell cycle position during DNA break induction and rejoining, non-targeted effects on bystander cells, and effects of charged particles on DNA fragmentation patterns.  相似文献   

7.
Astrocytes, the most common cell type in the brain, play a principal role in the repair of damaged brain tissues during external radiotherapy of brain tumours. As a downstream gene of p53, the effects of Krüppel‐like factor 4 (KLF4) in response to X‐ray‐induced DNA damage in astrocytes are unclear. In the present study, KLF4 expression was upregulated after the exposure of astrocytes isolated from the murine brain. Inhibition of KLF4 expression using lentiviral transduction produced less double‐strand DNA breaks (DSB) determined by a neutral comet assay and flow cytometric analysis of phosphorylated histone family 2A variant and more single‐strand DNA breaks (SSB) determined by a basic comet assay when the astrocytes were exposed to 4 Gy of X‐ray radiation. These data suggest that radiation exposure of the tissues around brain tumour during radiation therapy causes KLF4 overexpression in astrocytes, which induces more DSB and reduces SSB. This causes the adverse effects of radiation therapy in the treatment of brain tumours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
To study possible genotoxic effects of occupational exposure to vanadium pentoxide, we determined DNA strand breaks (with alkaline comet assay), 8-hydroxy-2'deoxyguanosine (8-OHdG) and the frequency of sister chromatid exchange (SCE) in whole blood leukocytes or lymphocytes of 49 male workers employed in a vanadium factory in comparison to 12 non-exposed controls. In addition, vanadate has been tested in vitro to induce DNA strand breaks in whole blood cells, isolated lymphocytes and cultured human fibroblasts of healthy donors at concentrations comparable to the observed levels of vanadium in vivo. To investigate the impact of vanadate on the repair of damaged DNA, co-exposure to UV or bleomycin was used in fibroblasts, and DNA migration in the alkaline and neutral comet assay was determined. Although, exposed workers showed a significant vanadium uptake (serum: median 5.38microg/l, range 2.18-46.35microg/l) no increase in cytogenetic effects or oxidative DNA damage in leukocytes could be demonstrated. This was consistent with the observation that in vitro exposure of whole blood leukocytes and lymphocytes to vanadate caused no significant changes in DNA strand breaks below concentrations of 1microM (50microg/l). In contrast, vanadate clearly induced DNA fragmentation in cultured fibroblasts at relevant concentrations. Combined exposure of fibroblasts to vanadate/UV or vanadate/bleomycin resulted in non-repairable DNA double strand breaks (DSBs) as seen in the neutral comet assay. We conclude that exposure of human fibroblasts to vanadate effectively causes DNA strand breaks, and co-exposure of cells to other genotoxic agents may result in persistent DNA damage.  相似文献   

9.
Cultured human diploid fibroblasts and cultured rat granulosa cells were exposed to intermittent and continuous radiofrequency electromagnetic fields (RF-EMF) used in mobile phones, with different specific absorption rates (SAR) and different mobile-phone modulations. DNA strand breaks were determined by means of the alkaline and neutral comet assay. RF-EMF exposure (1800 MHz; SAR 1.2 or 2 W/kg; different modulations; during 4, 16 and 24h; intermittent 5 min on/10 min off or continuous wave) induced DNA single- and double-strand breaks. Effects occurred after 16 h exposure in both cell types and after different mobile-phone modulations. The intermittent exposure showed a stronger effect in the comet assay than continuous exposure. Therefore we conclude that the induced DNA damage cannot be based on thermal effects.  相似文献   

10.
The effect of vinblastine sulfate on gamma-radiation-induced DNA strand breaks in different tissues of tumour bearing mice, was studied by single-cell gel electrophoresis. Intraperitonial administration of different doses (0.25-2.0mg/kg body weight) of vinblastine sulfate 30 min prior to 4 Gy gamma-radiation exposure showed a dose-dependent decrease in the yield of DNA strand breaks in murine fibrosarcoma, blood leukocytes and bone marrow cells. The dose-dependent protection of cellular DNA against radiation-induced strand breaks as evidenced from comet tail length, tail moment and percent DNA in the tail, was more pronounced in bone marrow cells than in the cells of the tumor fibrosarcoma. In fibrosarcoma cells, the decrease in comet tail length, tail moment and percent DNA in the tail was detected at lower doses of vinblastine sulfate administration and these parameters were not significantly altered at higher doses, from that of the control irradiated. From this study, it appears that in addition to anticancer activity, vinblastine sulfate could offer protection to the normal tissues against gamma-radiation-induced DNA strand breaks.  相似文献   

11.
The effects of treatment with trientine, a specific copper-chelating agent, on the accumulation of copper and induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson's disease. Copper accumulated in the kidneys of LEC rats in an age-dependent manner from 12 to 18 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, renal copper contents did not increase and were maintained at the same levels as those in 4-week-old LEC rats. Estimation of the amounts of DNA single-strand breaks (SSBs) by comet assay showed that SSBs of DNA were induced in a substantial population of LEC rat renal cortex cells around 12 weeks of age and that the amounts of SSBs increased in an age-dependent manner from 12 to 18 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, the observed number of cells with DNA damage decreased, suggesting that induction of SSBs of DNA was inhibited and/or SSBs were repaired during the period of treatment with trientine. The results show that SSBs of DNA in LEC rat kidney cells are induced prior to occurrence of clinical signs of hepatic injury and that treatment of LEC rats with trientine decreases the number of DNA strand breaks.  相似文献   

12.
Effects of treatment with trientine, a specific copper-chelating agent, on accumulation of copper and induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson's disease. Copper accumulated in the livers of LEC rats in an age-dependent manner from 4 to 13 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, hepatic copper contents did not increase and were maintained at the same levels as those in 10-week-old LEC rats. When the amounts of DNA single-strand breaks (SSBs) were estimated by a comet assay, SSBs of DNA were induced in a substantial population of LEC rat hepatic cells around 8 weeks of age and the amounts of SSBs increased in an age-dependent manner from 8 to 15 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, the observed number of cells with DNA damage decreased dramatically, suggesting that induction of SSBs of DNA was inhibited and/or SSBs were repaired during the period of treatment with trientine. The results show that treatment of LEC rats with trientine decreases the number of DNA strand breaks observed, although copper contents remain high in the liver.  相似文献   

13.
DNA damage in single peripheral blood (pb) and bone marrow (bm) cells was studied in dogs which were exposed to total body X-ray irradiation (TBI) with a lethal dose of 3.9 Gy. The changes in pb and bm cell numbers were measured within 9 days after TBI. Using the alkaline single-cell gel electrophoresis technique (‘comet’ assay). DNA strand breaks and alkali labile sites were assessed in single cells derived from the blood before TBI, 1 h and 4 h after TBI and on days 1, 3 and 9 after TBI. Bone marrow cells subjected to the assay were collected before and on days 1 and 9 after TBI. Cells expressing the strongest DNA damage were most frequent in the blood 1 h after TBI and in the bone marrow 1 day after exposure. Thereafter, a continuous reduction of DNA damage in individual cells was observed in the course of progressive leukopenia and granulocytopenia.  相似文献   

14.
The dorsal skin of C3H/Tif/hr hairless mice was painted with coal tar, pharmacological grade. Epidermal cells and hepatocytes were isolated after 4, 24, 48 and 96 h and DNA strand breaks were determined as tail moment by the alkaline comet assay. The tail moment of epidermal cells was significantly greater at the time points 4, 24, 48 and 96 h after exposure compared to the controls, with the most DNA strand breaks at 24 h. The DNA strand breaks in epidermal cells increased linearly with the dose of coal tar. In hepatocytes, no difference in DNA strand breaks was found between exposed animals and controls. DNA adducts were determined by the 32P-postlabeling assay. For epidermal cells, the mean DNA adduct level was 12-fold greater in coal tar painted mice after 24 h than in controls. Again, a linear dose/response relationship was seen 24 h after painting. For liver DNA, the mean DNA adduct level was 3-fold greater than for controls. The mutation frequency in epidermal and liver cells was examined in lambdalacZ transgenic mice (MutaMouse). Thirty-two days after painting, the mutation frequency in epidermal cells was 16-fold greater in coal tar treated mice compared to controls. No effect was detected in hepatocytes. We found that a single painting of coal tar resulted in strong genotoxic effects in the murine epidermis, evidenced by induction of DNA strand breaks and DNA adducts in hairless mice and lambdalacZ mutations in the MutaMouse. This demonstrates that it is possible to detect genotoxic effects of mixtures with high sensitivity in mouse skin by these end-points.  相似文献   

15.
Cells from chronic lymphocytic leukemia (CLL) patients and from healthy individuals were irradiated with UVC and incubated for varying periods of time. The number of single strand breaks and alkali-labile sites was determined by comet analysis. Unirradiated CLL and healthy cells exhibited no significant numbers of single strand breaks. The extent of DNA damage was found to increase with dose for both healthy and CLL cells. However, the CLL cells had much more extensive DNA fragmentation than healthy cells at each dose. Deoxyribonucleoside supplemented medium inhibited comet formation in both cell types. Thymidine alone produced the same effect. In healthy cells, repair of lesions was complete after 4 h of incubation as indicated by the absence of comet formation. The CLL cells exhibited no significant repair even after 48 h. CLL lymphocytes are killed by very low doses of UVC radiation. The results reported here suggest that this hypersensitivity results from the inability of CLL cells to repair UVC-induced DNA damage and a contributing factor is the low amounts of intracellular deoxyribonucleosides.  相似文献   

16.
The comet assay is a widely used biomonitoring tool for DNA damage. The most commonly used cells in human studies are lymphocytes. There is an urgent need to find an alternative target human cell that can be collected from normal subjects with minimal invasion. There are some reports of buccal cells, collected easily from the inside of the mouth, being used in studies of DNA damage and repair, and these were of interest. However, our preliminary studies following the published protocol showed that buccal cells sustained massive damage and disintegrated at the high pH [O. Ostling, K.J. Johanson. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123 (1984) 291-298] used, but that at lower pH were extremely resistant to lysis, an essential step in the comet assay. Therefore, the aims of this study were to develop a protocol than enabled buccal cell lysis and DNA damage testing in the comet assay, and to use the model to evaluate the potential use of the buccal cell model in human biomonitoring and nutritional study. Specifically, we aimed to investigate intra- and inter-individual differences in buccal cell DNA damage (as strand breaks), the effect of in vitro exposure to both a standard oxidant challenge and antioxidant treatment, as well as in situ exposure to an antioxidant-rich beverage and supplementation-related effects using a carotenoid-rich food. Successful lysis was achieved using 0.25% trypsin for 30 min followed by proteinase K (1mg/ml) treatment for 60 min. When this procedure was performed on cells pre-embedded in agarose on a microscope slide, followed by electrophoresis (in 0.01 M NaOH, 1mM EDTA, pH 9.1, 18 min at 12 V), a satisfactory comet image was obtained, though inter-individual variation was quite wide. Pre-lysis exposure of cells to a standard oxidant challenge (induced by H2O2) increased DNA strand breaks in a dose related manner, and incubation of cells in Trolox (a water soluble Vitamin E analogue) conferred significant protection (P<0.05) against subsequent oxidant challenge. Exposure of buccal cell in situ (i.e. in the mouth) to antioxidant-rich green tea led to an acute decrease in basal DNA strand breaks. In a controlled human intervention trial, buccal cells from 14 subjects after 28 days' supplementation with a carotenoid-rich berry (Fructus barbarum L.) showed a small but statistically significant (P<0.05) decrease in DNA strand breaks. These data indicate that this buccal cell comet assay is a feasible and potentially useful alternative tool to the usual lymphocyte model in human biomonitoring and nutritional work.  相似文献   

17.
The alkaline single cell gel electrophoresis (comet) assay was applied to study genotoxic properties of two inhalation anesthetics-halothane and isoflurane-in human peripheral blood lymphocytes (PBL). The cells were exposed in vitro to either halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether) at concentrations 0.1-10 mM in DMSO. The anesthetics-induced DNA strand breaks as well as alkali-labile sites were measured as total comet length (i.e., increase of a DNA migration). Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner. In experiments conducted at two different electrophoretic conditions (0. 56 and 0.78 V/cm), halothane was able to increase DNA migration to a higher extent than isoflurane. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA degradation due to cell death. For this reason a contribution of toxicity in the observed effects was examined. We tested whether the exposed PBL were able to repair halothane- and isoflurane-induced DNA damage. The treated cells were incubated in a drug-free medium at 37 degrees C for 120 min to allow processing of the induced DNA damage. PBL exposed to isoflurane at 1 mM were able to complete repair within 60 min whereas for halothane a similar result was obtained at a concentration lower by one order of magnitude: the cells exposed to halothane at 1 mM removed the damage within 120 min only partly. We conclude that the increase of DNA migration induced in PBL by isoflurane at 1 mM and by halothane at 0.1 mM was not a result of cell death-associated DNA degradation but was caused by genotoxic action of the drugs. The DNA damage detected after the exposure to halothane at 1 mM was in part a result of DNA fragmentation due to cell death.  相似文献   

18.
Rats, 5, 10 or 25 days old, were 60 Co gamma irradiated. The induction of DNA strand breaks was studied after killing the rats within 1 min after irradiation, and the repair of the induced breaks after various intervals up to 180 min. Cell suspensions were prepared from the brain and samples were transferred into alkaline solutions. The fraction of DNA remaining double-stranded after 30 min alkali treatment was estimated after separation of single- and double-stranded DNA on hydroxylapatite. The amount of DNA strand breaks induced per Gray (1--8 Gray) was found to be in accordance with earlier in vivo studies of the mouse small intestine and mouse spleen. The DNA strand breaks in the rat brain induced by 4 Gray 60Co gamma irradiation were repaired 30 min after irradiation in all age groups studied.  相似文献   

19.
The alkaline comet assay is able to identify in individual cells DNA strand breaks associated with different processes. Topoisomerase inhibitors, some of which are used as chemotherapeutic agents, stabilise topoisomerase-DNA cleavable complexes by stimulating DNA strand cleavage and inhibiting religation. This can result in the activation of stress-associated signalling pathways, inducing cell cycle arrest and activation of the biochemical cascade of apoptosis. The aim of our study was to assess the ability of the comet assay to detect stabilisation of cleavable complexes and induction of apoptosis by two topoisomerase II inhibitors, etoposide and ellipticine, and two topoisomerase I inhibitors, camptothecin and topotecan. The study was carried out on Chinese hamster ovary (CHO) cells, DC3F cells and DC3F/C-10, its camptothecin-resistant counterpart. The comet assay was able to identify stabilised cleavable complexes through the presence of DNA strand breaks after 1h treatment that disappeared within 24h after drug removal. Kinetics studies allowed to discriminate between these early DNA damages and DNA fragmentation related to apoptosis characterised by reappearance of DNA strand breaks 48h after treatment.  相似文献   

20.
Although benzo[a]pyrene (B[a]P) is a well-known genotoxic agent, little is known about the extent of DNA effects induced by B[a]P in rat tissues after pulmonary exposure. The alkaline single-cell gel electrophoresis (comet assay) was used to measure DNA single-strand breaks in alveolar macrophages, lung cells, peripheral lymphocytes and hepatocytes of OFA Sprague-Dawley rats exposed to a single dose of B[a]P by endotracheal administration.Statistically significant damage was observed in all organs tested after 3, 24 and 48h of pulmonary exposure to 3mg of B[a]P per animal, with a time-dependent relationship. The maximum damage was observed in the four cell types 24h after exposure. The higher level of damage was observed both in lung cells and peripheral lymphocytes; in alveolar macrophages and hepatocytes the level of damage was increased, but at a lower level than in the two other cell types. Furthermore, B[a]P demonstrated a clear dose-related genotoxic activity in the lung cells when tested at doses of 0.75, 1.5 and 3mg.The current study shows that B[a]P caused DNA single-strand breaks in the respiratory tract of endotracheally treated OFA Sprague-Dawley rats. The study also suggests that pulmonary exposure to B[a]P can induce a high level of DNA damage in peripheral lymphocytes. The clear relationship between lung exposure to B[a]P and consequences observed in lymphocytes suggests that the comet assay in peripheral lymphocytes can be used as a sensitive marker in human monitoring studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号