首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The injection into mice of a single dose of conduritol B epoxide, a covalent inhibitor of glucosidases, quickly produced changes in tissue levels of beta-D-glucuronidase (EC 3.2.1.31). The specific activity of the enzyme decreased in liver, spleen and kidney while brain showed little change. The inhibitor did not act on glucuronidase in vitro, so the effect of the inhibitor is complex, possibly a result of the loss of glucosidase activity. Since glucuronidase contains glucose, we suggest that the transport of the enzyme between subcellular regions and tissues involves loss of part of the glucose moieties. 2. Levels of glucocerebrosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) dropped very rapidly after epoxide injection, reaching a minimum at 1 h in liver. There was a noticeable restoration of activity within the next 1--2 h. Aryl beta-glucosidase (EC 3.2.1.21) decrease somewhat less than cerebrosidase, reaching a minimum within 2 h. It too showed some recovery of activity within 3 h. 3. Acid phosphatase rose slightly in liver but not in brain. alpha-L-Fucosidase and angiotensin-converting enzyme were not affected by the epoxide injection. The latter two enzymes are known to contain glucose. 4. Injection of a hemolyzing agent, phenylhydrazine, produced an increased level of glucuronidase in liver and spleen within 6 days, but not in kidney. This enhancement was a little less in mice previously injected with the glucosidase inhibitor. 5. Mice injected with the epoxide once a day eight times showed a distinct rise in brain glucuronidase level, as well as a rise in brain weight. However, the other organs showed only the same decrease in glucuronidase specific activity noted with the single injection protocol. It is suggested that the difference is due to the blood-brain barrier, which could slow the loss of brain glucuronidase from the extracellular fluid.  相似文献   

2.
Hydrolysis of p-nitrophenyl-beta-D-glucoside by cytosolic beta-glucosidase proceeds with retention of the anomeric configuration. Whereas inactivation of the enzyme by the glucosidase inhibitor conduritol B epoxide (CBE) was extremely slow (ki(max)/Ki 0.57 M-1 min-1) it reacted 130 times more rapidly with 6-bromo-6-deoxy-CBE (Br-CBE). The beta-glucosidase could be labeled with [3H]Br-CBE; incorporation of 1 mol inhibitor/mol enzyme resulted in complete loss of activity. Most of the bound inhibitor was released after denaturation and treatment with ammonia as (1,3,4/2,5,6)-6-bromocyclohexanepentol, thus demonstrating the formation of an ester bond with an active site carboxylate by trans-diaxial opening of the epoxide ring. It was concluded from the Ki values for the epoxide inhibitors and for coduritol B with the cytosolic enzyme and corresponding data for the lysosomal beta-glucosidase that the unusually low reactivity with CBE and Br-CBE is probably due to the inability of the cytosolic enzyme to effectively donate a proton to the epoxide oxygen. An extremely rapid inactivation of the cytosolic beta-glucosidase was caused by bromoconduritol F ((1,2,4/3)-1-bromo-2,3,4-trihydroxycyclohex-5-ene) with ki(max)/Ki 10(5) M-1 min-1. In contrast with the Br-CBE-inhibited enzyme the beta-glucosidase inhibited by bromoconduritol F was subject to spontaneous reactivation with t1/2 approximately 20 min.  相似文献   

3.
To elucidate the genetic heterogeneity in Gaucher disease, the residual beta-glucosidase in cultured fibroblasts from affected patients with each of the major phenotypes was investigated in vitro and/or in viable cells by inhibitor studies using the covalent catalytic site inhibitors, conduritol B epoxide or its bromo derivative, and the reversible cationic inhibitor, sphingosine. These studies delineated three distinct groups (designated A, B, and C) of residual activities with characteristic responses to these inhibitors. Group A residual enzymes had normal I50 values (i.e., the concentration of inhibitor that results in 50% inhibition) for the inhibitors and normal or nearly normal t1/2 values for conduritol B epoxide. All neuronopathic (types 2 and 3) and most non-Jewish nonneuronopathic (type 1) patients had group A residual activities and, thus, could not be distinguished by these inhibitor studies. Group B residual enzymes had about four- to fivefold increased I50 values for the inhibitors and similarly increased t1/2 values for conduritol B epoxide. All Ashkenazi Jewish type 1 and only two non-Jewish type 1 patients had group B residual activities. The differences in I50 values between groups A and B also were confirmed by determining the uninhibited enzyme activity after culturing the cells in the presence of bromo-conduritol B epoxide. Group C residual activity had intermediate I50 values for the inhibitors and represented a single Afrikaner type 1 patient: this patient was a genetic compound for the group A (type 2) and group B (type 1) mutations. These inhibition studies indicated that: Gaucher disease type 1 is biochemically heterogeneous, neuronopathic and non-Jewish nonneuronopathic phenotypes cannot be reliably distinguished by these inhibitor studies, and the Ashkenazi Jewish form of Gaucher disease type 1 results from a unique mutation in a specific active site domain of acid beta-glucosidase that leads to a defective enzyme with a decreased Vmax.  相似文献   

4.
Cyclophellitol, a cyclitol with an epoxide, is a novel microbial secondary metabolite that inhibits beta-glucosidase and beta-glucocerebrosidase. Daily administration of cyclophellitol induces a severe abnormality of the nervous system in mice while it has no toxicity in various cultured cells. It was shown to inhibit glucocerebrosidase in vivo significantly in mice and the content of glucocerebroside in liver, spleen, and brain was increased markedly. The enzyme activity was completely suppressed in brain, liver, spleen, kidney, and muscle. On the other hand hexosaminidase activity was not affected in all tissues. After a single administration of cyclophellitol the maximal inhibition of glucocerebrosidase was observed within 30 min in brain and liver, and the inhibition lasted for 2-4 days. A single administration of cyclophellitol also induced a severe abnormality of the nervous system known as Gaucher's-like disease in mice. Conduritol B epoxide is also known to inhibit glucocerebrosidase and induce Gaucher's like-disease in mice by repetitive injection. Cyclophellitol was shown to be more potent than conduritol B epoxide in inhibition of glucocerebrosidase and in induction of the neural abnormality.  相似文献   

5.
The intercellular lipids of the stratum corneum, which are highly enriched in ceramides, are critical for the mammalian epidermal permeability barrier. During the terminal stages of epidermal differentiation, the glucosylceramide content is dramatically reduced, while the content of free ceramides increases. To investigate whether beta-glucocerebrosidase (beta-GlcCer'ase) could be responsible for this change in lipid content, we characterized its activity in murine epidermis, compared enzyme activity to other murine tissues, and localized beta-GlcCer'ase activity within the epidermis. Epidermal extracts demonstrated linear 4-methylumbelliferyl-beta-D-glucose hydrolysis (to 3 h) with protein concentrations between 1 and 250 micrograms/ml. Whole epidermis contained comparable beta-glucosidase activity (9.1 +/- 0.4 nmol/min per mg DNA) to murine brain and liver, and 5-fold higher activity than spleen. Epidermal beta-glucosidase activity was stimulated greater than 15-fold by sodium taurocholate at pH 5.6, and inhibited at acidic pH (3.5-4.0). Bromoconduritol B epoxide (greater than or equal to 1.0 microM), inhibited epidermal enzyme activity by greater than 75%, while activity in brain, liver, and spleen was only inhibited by 6, 17, and 14%, respectively. Moreover, beta-GlcCer'ase mRNA expression in murine epidermis exceeded levels in liver, brain, and spleen. Finally, beta-GlcCer'ase activity was highest in the outer, more differentiated epidermal cell layers including the stratum corneum. In summary, mammalian epidermis contains an usually high percentage (approximately 75%) of beta-glucocerebrosidase activity, and the concentration of activity in the more differentiated cell layers may account for the replacement of glucosylceramide by ceramides in the outer epidermis.  相似文献   

6.
7.
We show that sialosylgangliotetraosylceramide (GM1) is a potent activator of delipidated (sodium cholate- and 1-butanol-extracted) lysosomal rat liver glucocerebroside:beta-glucosidase. Stimulation of 4-methylumbelliferyl-beta-D-glucopyranoside hydrolysis by the beta-glucosidase was markedly dependent upon the concentration of GM1 in the assay medium. Estimations of critical micellar concentration (CMC) performed fluorometrically using the dye N-phenylnaphthylamine revealed two CMC values of GM1 above 18 degrees C; the CMC of the primary micelles (3.32 microM) was temperature-independent whereas that of the secondary micelles decreased with decreasing temperature (17.2 and 10.8 microM at 37 and 20 degrees C, respectively). In the temperature range of 18-39 degrees C, beta-glucosidase activity increased sharply when the GM1 concentration was above the CMC of the secondary micelles. Although a heat-stable factor, purified from the spleen of a patient with Gaucher's disease, had a profound effect on the activation of beta-glucosidase by GM1, it decreased the CMC only slightly (14.8 versus 17.2 microM at 37 degrees C). The heat-stable factor (8 micrograms/ml) changed the shape of the activation curve from sigmoidal to hyperbolic, suggesting that the heat-stable factor permits beta-glucosidase to be activated by primary micelles or monomers. The results of gel filtration chromatography and sucrose gradient centrifugation in H2O and D2O revealed that the activation of beta-glucosidase by GM1 was associated with an increase in the size of the enzyme from 45,800 to 178,500 daltons and an increase in the partial specific volume from 0.697 to 0.740 ml/g. The active, reconstituted beta-glucosidase appears to consist of 50% protein and 50% ganglioside (56 molecules/178,500 g). Concentrations of GM1 below the CMC of secondary micelles increased the rate of inactivation of the enzyme by the irreversible inhibitor conduritol B epoxide at 37 degrees C, indicating that GM1 monomers or primary micelles do interact with the enzyme, even though they do not increase the rate of hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside by the enzyme.  相似文献   

8.
A test system for growth regulators based on the time course of liver regeneration in male NMRI mice injected intraperitoneally (ip) with 50 nmol CCl4 at 12 is described. Regenerative DNA synthesis (labelling index) peaked at 36 h after CCl4 injury, and the Colcemid-assessed mitotic rate (MR) at 42 h, i.e., 6 h later. This response pattern was used to assess the effects of factors in liver extracts that regulate or modulate hepatocyte proliferation. The effect of one, two, four or eight ip injections of an aqueous mouse liver extract on MR was tested at 48 h. A 30-70% inhibition was seen only after single injections at 12 h, 29 h or 44 h after CCl4 treatment. A 30-80% stimulation was observed after a single injection of the liver extract at 0, 5 or 24 h, and after two or four injections. The assay system could thus detect the presence of growth modulators in the extract. The experiments also showed that the timing was crucial. We recently isolated and characterized a growth inhibitory pentapeptide from mouse liver extracts. Using a synthetic pentapeptide with the same structure we reassessed the timing for growth inhibition seen with the liver extract. The following test system for growth inhibitors seemed most expedient: inhibitor administration at 29 h to affect G1-S transition, measured as reduced DNA synthesis at 36 h, or inhibitor administration at 44 h to affect G2-M transition, measured as reduced MR at 48 h.  相似文献   

9.
The activity of prolyl endopeptidase in homogenates of mouse tissues was determined 30 min after intraperitoneal injection of N-benzyloxycarbonyl-prolyl-prolinal (1.25 mg/kg), a potent transition state analog inhibitor (K1 = 14 nM) of prolyl endopeptidase (EC 3.4.21.26). A more than 85% decrease of enzyme activity was obtained in all tissues. The in vivo degradation of potential prolyl endopeptidase substrates was studied by following the release of sulfamethoxazole from N-benzyloxycarbonylglycyl-prolyl-sulfamethoxazole, a model synthetic substrate of the enzyme. When this substrate was given intraperitoneally, its enzymatic degradation was blocked after administration of the inhibitor in a dose- and time-dependent manner, indicating inhibition of the enzyme in vivo. Of interest is the long duration of the inhibition. After a relatively low inhibitor dose (5 mg/kg) significant inhibition was seen in most tissues even after 6 h. The brain was particularly sensitive to the effect of the inhibitor. Since prolyl endopeptidase readily degrades many proline-containing neuropeptides, the inhibitor should be of value in studies on the role of the enzyme in neuropeptide metabolism.  相似文献   

10.
A test system for growth regulators based on the time course of liver regeneration in male NMRI mice injected intraperitonelly (ip) with 50 nmol CC14 at 12 is described. Regenerative DNA synthesis (labelling index) peaked at 36 h after CC14 injury, and the Colcemid-assessed mitotic rate (MR) at 42 h, i.e., 6 h later. This response pattern was used to assess the effects of factors in liver extracts that regulate or modulate hepatocyte proliferation. The effect of one, two, four or eight ip injections of an aqueous mouse liver extract on MR was tested at 48 h. A 30–70% inhibition was seen only after single injections at 12 h, 29 h or 44 h after CCl4 treatment. A 30–80% stimulation was observed after a single injection of the liver extract at 0, 5 or 24 h, and after two or four injections. The assay system could thus detect the presence of growth modulators in the extract. The experiments also showed that the timing was crucial. We recently isolated and characterized a growth inhibitory pentapeptide from mouse liver extracts. Using a synthetic pentapeptide with the same structure we reassessed the timing for growth inhibition seen with the liver extract. The following test system for growth inhibitors seemed most expedient: inhibitor administration at 29 h to affect G1-S transition, measured as reduced DNA synthesis at 36 h, or inhibitor administration at 44 h to affect G2-M transition, measured as reduced MR at 48 h.  相似文献   

11.
1. Injection of a single dose of conduritol B epoxide into mice produced almost complete destruction of glucocerebrosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) in liver, spleen, brain, and kidney within 5 h. Restoration of activity became noticeable within 1 day (2 days in the case of brain) and was about 80% of normal within 16 days. 2. The same injection produced less destruction of aryl beta-glucosidase (EC 3.2.1.21), measured at pH 5.4 with methylumbelliferyl glucoside in the absence of taurocholate. Brain showed the least amount of destruction, about 50%, but measurements of activity at lower pH values revealed complete loss of activity. This suggests that brain contains two different aryl glucosidases with differing sensitivity to the inhibitor. Liver, on the other hand, did not show differential destruction when assayed at different pH values. Resynthesis of the enzyme activities was almost complete by 16 days. 3. Injection of phenylhydrazine produced hemolysis and spleen enlargement, with concomitant increases in specific activities of glucocerebrosidase and aryl glucosidase in liver and spleen (but not in kidney). When this experiment was done in mice previously treated with conduritol B expoxide, the reappearance of cerebrosidase was found to be accelerated. This is interpreted to mean that the increased load of glucolipids from the erythrocytes had induced an enhanced synthesis of the glucohydrolase. A similar explanation may apply to aryl glucosidase and glucopeptides in the cells.  相似文献   

12.
Evaluation of ontogenetic expression of the cytochrome P450PCN and cytochrome P450b gene families as well as the NADPH-cytochrome P450 oxidoreductase and epoxide hydrolase genes in Holtzmann rats showed that basal levels of mRNAs encoding these enzymes could be detected in most tissues. Distinct developmental patterns of mRNA expression are evident for these four proteins in liver and extrahepatic tissues. Levels of cytochrome P450b-like mRNA were comparable in adult lung and liver, while cytochrome P450PCN-homologous mRNA exhibited low levels in lung and approximately 100-fold higher levels in liver. Cytochrome P450PCN-homologous mRNA also reached substantial levels in adult intestine, and was also present in placenta, where it increased approximately 4-fold 24 h before birth. Epoxide hydrolase mRNA was demonstrated to be highest in liver followed by kidney, lung, and intestine but was extremely low in brain. NADPH-cytochrome P450 oxidoreductase mRNA in kidney, lung, prostate, adrenal, and intestine exhibited levels comparable to that found in liver; however, the pattern of expression for oxidoreductase mRNA was unique in that levels declined at maturity in liver, kidney, and intestine but not in lung and brain. Development of mixed-function oxidase and epoxide hydrolase activities in liver was distinct from that in other tissues in that mRNAs for all four proteins rose dramatically after parturition. Testis from immature males demonstrated low levels of all the mRNAs assayed, which ranged from 20% (oxidoreductase) to less than 1% (cytochrome P450PCN and epoxide hydrolase) of the levels found in liver.  相似文献   

13.
D Fabbro  R J Desnick  S Gatt 《Enzyme》1984,31(2):122-127
Studies were undertaken to characterize the beta-glucosidase activity in freshly homogenized liver from Sprague-Dawley rats. About 95% of the total beta-glucosidase activity was associated with the particulate fraction, whereas only about 3-7% was found in the cytosol. Storage of fresh liver at room temperature for several hours or repeated freezing and thawing of fresh rat liver prior to homogenization, solubilized 20-30% of the total hepatic beta-glucosidase activity. An additional 30% could be solubilized by extracting the particulate sediments with water or Triton X-100. The enzymatic activity in both the particulate and solubilized fractions optimally hydrolyzed 4-methylumbelliferyl-beta-D-glucoside as well as the glycolipid substrate, glucosylceramide, at an acidic pH. The rates of hydrolysis of either substrate by all subcellular fractions were stimulated by addition of sodium taurocholate or phosphatidylserine. The particulate, cytosolic and solubilized enzymes bound to concanavalin A, were inhibited by conduritol B epoxide and migrated more electronegatively on cellulose acetate than the cytosolic acid beta-glucosidase from human liver or spleen. These data indicated that the liver of Sprague-Dawley rats contained primarily the lysosomal acid beta-glucosidase ('glucocerebrosidase') and little, if any, 'nonspecific' beta-glucosidase. This, and the fact that about 60% of the rat hepatic beta-glucosidase could be solubilized by autolysis, freezing and rethawing or extraction with water, contrasts with the beta-glucosidases in human liver since about 80% of the total beta-glucosidase activity is cytosolic and does not hydrolyze glucosylceramide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The lipid requirement of membrane-bound rat liver beta-glucosidase was investigated using 4-methylumbelliferyl-beta-D-glucopyranoside as the substrate. The enzyme was solubilized and delipidated by sequential extraction of a crude lysosomal fraction from rat liver lysosomes with sodium cholate and ice-cold butan-1-ol. Neither saturated nor unsaturated phosphatidylcholine activated this enzyme. In contrast, acidic phospholipids like phosphatidylglycerol (PtdGro) and phosphatidylserine (PtdSer) were effective activators. For the PtdGro series, fatty acid composition was important, with the shorter chain or unsaturated fatty acid-containing PtdGro species being the best activators. Heat-stable factor (HSF) from Gaucher spleen by itself (1-2 micrograms) had no effect on enzyme activity. However, the same amount of HSF when combined with 10 micrograms of PtdSer markedly stimulated beta-glucosidase activity. In the presence of HSF, di-9-cis-octadecenoyl-PtdGro (1 microgram) or -PtdSer (5 micrograms) provided maximum protection of beta-glucosidase against heat (60 degrees C) inactivation. In the absence of phospholipids, HSF had no effect on the rate of inactivation of the enzyme by the suicide inhibitor conduritol B epoxide (t0.5, 12 +/- 0.5 min); the maximum rate of inactivation was achieved in the presence of a mixture of PtdGro (2.5-5 micrograms) and HSF (t0.5, 2.8 min). The combination of PtdSer (10 micrograms) and HSF (1.3 micrograms) lowered the Km for 4-methylumbelliferyl-beta-D-glucopyranoside from 24 to 2.7 mM. Inhibition of the enzyme by the glucocerebrosidase substrate analogues N-hexyl-O-glucosylsphingosine and glucosylsphingosine was influenced by the activator substances. The inclusion of PtdSer and HSF in the beta-glucosidase assay medium lowered the Ki of N-hexyl-O-glucosylsphingosine 20-fold. The same combination of activators decreased the I0.5 of the enzyme for glucosylsphingosine from 89.4 to 7.6 microM. A study of log (Vmax./Km) versus pH indicated that the PtdSer-HSF pair creates the active site of beta-glucosidase, making apparent three ionizable groups on the enzyme with pK values in the range 4.5-5.1.  相似文献   

15.
An anion-exchange HPLC mass assay was used to characterize Swiss-Webster mouse brain and peripheral tissue inositol(1)phosphate [Ins(1)P]levels. Ins(1)P was identified in all tissues studied but Ins(4)P could be identified only in brain, and then only as a part of a peak containing an additional, unidentified component. As a result, it was not possible to quantify Ins(4)P levels. Following a single subcutaneous dose of lithium (10 mmol/kg), brain Ins(1)P levels were maximally elevated after 6 h (corresponding to peak brain lithium concentrations) and were increased to levels 35- and 20-fold higher than in saline-treated animals in cholinergic agonist (pilocarpine)-stimulated and unstimulated animals, respectively. The ED50 for the lithium-induced accumulation of brain Ins(1)P 6 h after administration was 4-6 mmol/kg. The pilocarpine stimulation of lithium-induced brain Ins(1)P accumulation had an ED50 of 22 mg/kg, with maximal accumulation occurring 120 min after pilocarpine administration. Atropine reduced Ins(1)P levels, in both the absence and the presence of lithium, by 40%, indicating that cholinergic systems contribute a large (40%) component of basal brain phosphatidylinositol (PI) cycle activity. In peripheral tissues, there were lithium-induced accumulations of Ins(1)P in kidney, heart, and liver (but not testes) but these were less than that seen in the brain, suggesting that under basal (and pilocarpine-stimulated) conditions, the brain has a higher turnover of the PI cycle than the various peripheral tissues studied. These data support the hypothesis that lithium exerts its effects in vivo via modulation of the PI cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Two independent approaches were employed to explore the potential role of endogenous glucosylceramide or a closely related glucosphingolipid in mediating the cellular proliferation of Madin-Darby canine kidney cells. First, cultured cells were depleted of glucosphingolipids by exposure to a glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. This agent markedly inhibited cell growth and DNA synthesis in a time- and concentration-dependent manner. Second, cells were grown in the presence of conduritol B epoxide, an inhibitor of glucosylceramide beta-D-glucosidase. Exposure of cells to this inhibitor resulted in the time-dependent accumulation of glucosylceramide with a corresponding increase in cellular proliferation. Alterations in protein kinase C activity were evaluated as a potential mechanism for these effects on growth. Both membrane- and cytosol-associated protein kinase C (PKC) activity declined under conditions of glucosylceramide synthase inhibition and increased under conditions of beta-glucosidase inhibition. The changes in PKC activity were evident after DEAE-cellulose purification. Diacylglycerol levels increased in response to both glucosylceramide synthase and beta-glucosidase inhibition. Ceramide and sphingosine levels changed only in the presence of D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, increasing due to lack of conversion to glucosylceramide. However, the elevation in endogenous sphingosine was probably insufficient to account for the decrease in PKC, considering the high level of diacylglycerol in the cells. These data demonstrate an association between glucosylceramide levels, PKC activity, and cell growth.  相似文献   

17.
(11S,12S)-Epoxy-5,14-cis-7,9-trans-eicosatetraenoic acid (11,12-leukotriene A4) was nonenzymically converted to seven compounds: two diastereomers of (12S)-hydroxyeicosatetraeno-delta-lactones (major products), two diastereomers of (5,12S)-dihydroxyeicosatetraenoic acid and three stereoisomers of (11,12S)-dihydroxyeicosatetraenoic acid. Among these compounds, (11R,12S)-dihydroxy-5,14-cis-7,9-trans-eicosatetraenoic acid proved to be the only enzymic product. This hydrolysis activity was present in the cytosol fractions of various tissues of guinea pig such as liver, adrenal gland, small intestine, and brain. We purified the epoxide hydrolase to an apparent homogeneity from the guinea pig liver. The enzyme had a molecular weight of 60,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 7.3. The partial amino acid sequence was different from that of the microsomal enzyme. Km and Vmax values for 11,12-leukotriene A4 were 18 microM and 2.4 mumol/min/mg protein, respectively. These results indicate that 11,12-dihydroxyeicosatetraenoic acid is enzymically synthesized from 11,12-leukotriene A4 by the action of the cytosolic epoxide hydrolase in vitro.  相似文献   

18.
The twitcher mutant mouse, the animal model of Krabbe disease (human globoid cell leukodystrophy), is characterized by apparent deficiency of galactosylceramide beta-galactosidase activity. Saposin A and C, the heat-stable small sphingolipid activator glycoproteins, stimulate the activity of galactosylceramide beta-galactosidase as well as glucosylceramide beta-glucoside. The role of these saposins in the twitcher mutation was investigated. Boiled supernatant fractions, which contained saposins, were prepared from homogenates of twitcher brain, liver, kidney, and spleen. These preparations showed an almost identical effect on the activity of purified glucosylceramide beta-glucosidase (measured by hydrolysis of 4-methylumbelliferyl-beta-glucoside) with similar preparations from control tissues. The effect on the activity of galactosylceramide beta-galactosidase as well as 4-methylumbelliferyl-beta-glucoside beta-glucosidase in the twitcher brain and liver homogenates by authentic saposin A and C was similar to that in control tissues. These results suggest that the twitcher mutation does not affect the concentrations of saposin A or C or their interaction with galactosylceramide beta-galactosidase.  相似文献   

19.
Male C57BL/6 mice were exposed to 1% (w/w) (+)- or (?)-2-ethylhexanoic acid or an equimolar mixture of these enantiomers in their diet for 4 or 10 days. A significant increase in liver weight and a 2- to 3-fold increase in the protein content of the mitochondrial fraction were seen in all cases. Peroxisomal palmitoyl-CoA oxidation was increased 2- to 3.5-fold after 4 days of treatment and 4- to 5-fold after 10 days, while the corresponding increases in peroxisomal lauroyl-CoA oxidase activity were 2- to 3-fold and 9- to 12-fold, respectively. Peroxisomal catalase activity was unchanged, whereas the microsomal and cytosolic activities were increased 2- to 3-fold and 6- to 16-fold, respectively. These treatments also induced microsomal ω-hydroxylation of lauric acid 7-fold and soluble epoxide hydrolase activity in the mitochondrial and cytosolic fractions, as well as microsomal epoxide hydrolase activity about 50–100%. The only significant differences observed between the effects of (+)-2-ethylhexanoic acid and its (?)-enantiomer were on peroxisomal palmitoyl-CoA oxidation and lauroyl-CoA oxidase activity after 4 days of treatment. In both these cases the (+)-enantiomer resulted in increases which were 50–75% greater than those seen with the (?)-form. © 1994 Wiley-Liss, Inc.  相似文献   

20.
In primary astrocyte cultures beta-glucosidase (EC 3.2.1.21) and beta-galactosidase (EC 3.2.1.23) showed pH optima and Km values identical to rat brain enzymes, using methylumbelliferyl glycosides and labeled gluco- and galactocerebrosides as substrates. The activities of both glycosidases increased in culture up to 3-4 weeks. In rat brain only galactosidase increased; glucosidase activity declined between 12-20 days after birth. The specific activities were two- to sixfold higher in astrocyte cultures than in rat brain. These activities were not due to uptake of enzymes from the growth medium. Secretion of beta-galactosidase, but not beta-glucosidase nor acid phosphatase could be demonstrated. These results support the suggestion of a degradative function for astrocytes in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号