首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cilia isolated from the olfactory epithelium (olfactory rosettes) of rainbow trout (Salmo gairdneri) bind amino acids, which are odor stimuli to this species. We demonstrate that L-threonine, L-serine, and L-alanine bind to a common site, TSA, in the cilia preparation. All possible mixtures of two of the amino acids as competitors, with the third as the 3H-labeled ligand, were studied. The effect of two combined (unlabeled) competitors was always substantially less than additive compared with their actions singly. Along with additional inhibition studies using mixtures of inhibitors, the data show that the three odorants must interact with at least one common binding site, TSA. Binding of L-[3H]lysine to site L was unaffected by addition of L-threonine, L-serine, or L-alanine, establishing its independence from site TSA. L-Arginine inhibited binding of L-[3H]lysine, showing that both of these basic amino acids interact with site L. The data establish the presence, in trout olfactory cilia, of at least two separate and noninteracting populations of odorant binding sites, TSA and L.  相似文献   

2.
1. Taste receptors for L-alanine and L-arginine in the channel catfish, Ictalurus punctatus, are differentially reactive to N-ethylmaleimide (NEM) and p-chloromercuribenzenesulphonic acid (pCMBS). 2. The binding of L-[3H]alanine by a sedimentable membrane fraction (Fraction P2) isolated from taste epithelium was inhibited by both NEM and pCMBS while the binding of L[3H]arginine was unaffected. 3. Inhibition of the binding of L-[3H]alanine by pCMBS was reversible with dithiothreitol (DTT). 4. NEM (10(-3) M) inhibited multi-unit neural responses to both 10(-4) M L-alanine and 10(-4) M L-arginine, while pCMBS had little effect on neural responses. 5. Pretreatment of intact taste epithelium before the preparation of Fraction P2 with NEM caused strong inhibition of L-[3H]alanine binding, while pretreatment with pCMBS caused weak inhibition. 6. The presence of L-alanine during the reaction of pCMBS or NEM with taste plasma membranes did not substantially protect against the inhibition of L-[3H]alanine binding.  相似文献   

3.
Ligand binding specificity of a neutral L-amino acid olfactory receptor   总被引:1,自引:0,他引:1  
1. The ligand binding specificity of the L-[3H]alanine binding site was investigated in isolated cilia preparations from the olfactory epithelium of channel catfish (Ictalurus punctatus) by competitive binding experiments. 2. Approximately 45 amino acids, derivatives and enantiomers were tested for the ability to compete with radiolabeled L-alanine for common binding sites. 3. Acidic and basic L-amino acids and imino acids did not compete as effectively as L-alanine for the receptor, while long-chain neutral ligands were only partially effective inhibitors of L-alanine binding. 4. D-Alanine and L-alanine derivatives with substituted alpha-amino or carboxyl groups exhibited decreased ability to compete for the receptor, paralleling their lower neurophysiological potency. 5. In combination, the ligand binding results were consistent with previous electrophysiological data in catfish, and suggest the presence of an olfactory receptor site that selectively recognizes short-chain neutral amino acids.  相似文献   

4.
Chemoreception in vertebrates is beginning to be understood. Numerous anatomical, behavioral, and physiological studies are now available. Current research efforts are examining the molecular basis of chemoreception. Rainbow trout (Salmo gairdneri) have a functional olfactory system and are a suitable vertebrate model for studying odorant interactions with receptors. Using a biochemical approach, initial events of olfactory recognition were examined; the aim was to determine the location and specificity of odor receptors. Cilia occupy the distal region of the receptor neuron on the trout olfactory epithelium, and their membranes are the postulated locus of odorant receptor sites. A cilia preparation was isolated from the olfactory rosette. The preparation was characterized by quantifying biochemical markers for cilia, along with electron microscopy, all of which substantiated enrichment of cilia. Functional activity was assessed by quantifying binding of several radioactively labeled odorant amino acids. The odorants bound to the cilia in a manner similar to the sedimentable preparation previously isolated from t h e olfactory rosette of the same animal, thus verifying the presence of odor receptors in the cilia preparation. Evidence also confirmed a site TSA which binds L-threonine, L-serine, and L-alanine and a site L which binds L-lysine (and L-arginine). Binding of L-serine and D-alanine showed evidence for a single affinity site while the others showed two affinity sites. Separation of membrane fractions from the cilia preparation revealed that binding activity is associated with a very low density membrane fraction B.  相似文献   

5.
Human and rat erythrocytes were found to generate 3HOH from D-[6(N)-3H]glucose. The rate of 3HOH production represented 7-10% of the glycolytic flux. The generation of 3HOH appeared attributable, in part at least, to the detritiation of [3-3H]pyruvate during the interconversion of the 2-keto acid and L-alanine in the reaction catalyzed by glutamate-pyruvate transaminase. Indeed, purified pig heart glutamate-pyruvate transaminase, as well as homogenates prepared from rat erythrocytes or pancreatic islets, catalyzed the generation of 3HOH from L-[3-3H]alanine. When the production of tritiated pyruvate from L-[3-3H]alanine was coupled to the conversion of the 2-keto acid to L-lactate, the production of 3HOH accounted for one-third of the reaction velocity, the latter failing to display isotopic discrimination. In these experiments, the production of 3HOH was abolished by amino-oxyacetate. Likewise, in intact rat erythrocytes, aminooxyacetate inhibited the generation of 3HOH and tritiated L-alanine from D-[6-3H]glucose (or D-[1-3H]glucose), as well as the generation of 3HOH from L-[3-3H]alanine. In pancreatic islets, however, aminooxyacetate failed to affect significantly the generation of 3HOH from D-[6-3H]glucose. These findings indicate that the generation of 3HOH from D-[6-3H]glucose is mainly attributable to an intermolecular tritium transfer in transaminase reaction, at least in cells devoid of mitochondria.  相似文献   

6.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
A high degree of binding of 5alpha-[3H]-androstenone was recorded in membrane-enriched fractions of porcine olfactory tissue. The specific (i.e. high affinity, low capacity) binding had a mean Ka approximately 2x10(8)M(-1). A Hill plot of the data showed a Hill coefficient of approximately 2, possibly suggesting co-operativity of binding, with binding constants increasing from 8x10(7) to 1.6x10(9)M(-1) with increasing substrate concentration. The level of specific binding of 5alpha-[3H]-androstenone was nearly 10-fold higher than in corresponding respiratory tissue preparations and was markedly reduced in the presence of excess (approximately 1 microM) unlabelled 5alpha-androstenone. Corresponding fractions derived from rat olfactory tissue showed only 25% of the binding recorded for the pig. After incubation of 5alpha-[3H]-androstenone with solubilised olfactory cilial tissue (porcine), gel filtration and chromatography on a typical "glycoprotein" column (Concanavalin A-Sepharose B) were performed. Specific binding was recorded only in fractions corresponding to glycoproteins with Mr of approximately 70-90 kDa. In a third series of experiments, fractions containing high concentrations of cilia, some still attached to the dendritic endings (as shown by electron microscopy) were obtained by a novel method involving stripping them off the nasal epithelium. The basal adenylate cyclase (AC) activity was very significantly (P<0.01) higher in olfactory, compared with respiratory, cilia; storage at -70 degrees C for 3 weeks greatly reduced AC activity. When fresh male and female porcine olfactory cilia preparations were incubated with 5alpha-androstenone plus GTP, AC activity was increased fourfold (P<0.01). However, responses of porcine respiratory cilia were not significant statistically, neither were changes in basal levels of AC activities in rat olfactory cilia.  相似文献   

8.
Summary L-Alanine binds to and activates specific taste receptors ofIctalurus punctatus, the channel catfish. In order to determine the structural requirements for receptor binding and activation in this model system, a number of analogues of L-alanine were tested using a neurophysiological assay and a competitive ligand binding assay. These assays measured the ability of analogues to activate taste receptors and to displace L-[3H]alanine from L-alanine binding sites. Of those derivatives with modifications of the sidechain, L-serine, glycine,-chloro-L-alanine and 1-amino-cyclopropane-1-carboxylic acid were the most potent analogues with IC50s similar to and neural responses slightly decremented from that of L-alanine. Derivatives containing branched sidechains or sidechains of otherwise increased volume were considerably less active. All modifications of the-carboxylic acid and the-amine, including amides, esters and various isosteres, led to substantial reduction in the analogues' ability to displace L-[3H]alanine and, in most cases, very weak stimulatory capability. However, L-lactic acid was a reasonably strong stimulus, but a poor competitor, suggesting that it acts at a different receptor site. Overall, these results indicate the importance of the charged amine and carboxylic acid groups for binding to and activation of the receptor for L-alanine. Moreover, modifications around the chiral center of L-alanine support the hypothesis that receptor binding and activation are separate processes in this model taste system.  相似文献   

9.
Poly(A)+ RNA (mRNA) isolated from rat liver was injected into Xenopus laevis oocytes, and expression of Na+/L-alanine transport was assayed by measuring Na(+)-dependent uptake of L-[3H]alanine. Expression of Na+/L-alanine transport was detected 3-7 days after mRNA injection, and was due to an increment of the Na(+)-dependent component. After injection of 40 ng of total mRNA, Na(+)-dependent uptake of L-alanine was 2.5-fold higher than in water-injected oocytes. In contrast with Na+/L-alanine transport by water-injected oocytes, expressed Na+/L-alanine transport was inhibited by N-methylaminoisobutyric acid, was inhibited by an extracellular pH of 6.5 and was saturated at approx. 1 mM-L-alanine. After sucrose-density-gradient fractionation, highest expression of Na+/L-alanine uptake was observed with mRNA of 1.9-2.5 kb in length. Compared with mRNA isolated from control rats, mRNA isolated from glucagon-treated rats showed a approx. 2-fold higher expression of Na+/L-alanine transport. The results demonstrate that both liver Na+/L-alanine transport systems (A and ASC) can be expressed in X. laevis oocytes. Furthermore, the data obtained with mRNA isolated from glucagon-treated rats suggest that glucagon regulates liver Na+/L-alanine transport (at least in part) via the availability of the corresponding mRNA.  相似文献   

10.
1. Taste receptors for L-alanine in the channel catfish Ictalurus punctatus have been partially characterized. The binding activity, which is localized to a sedimentable fraction (Fraction P2), was assayed with L-[3H]alanine as the ligand. 2. Addition of HgCl2 or p-mercuribenzoate to the assay at 0.1-1 mM markedly inhibited binding. The effect was not reversible and was unaffected by increased L-alanine in the binding assay. 3. The sulfhydryl reagents iodoacetate, 5,5'-dithiobis(2-nitrobenzoic acid), arsenite, and N-ethylmaleimide did not show appreciable inhibition of binding. The results suggest that the inhibitory effect of mercurials is not on specific sulfhydryl groups at alanine-binding sites. 4. Treatment of Fraction P2 with phospholipase C decreased binding activity and treatment with trypsin led to increased binding activity.  相似文献   

11.
The detritiation of L-[3-3H]alanine in the reaction catalyzed by pig heart glutamate-pyruvate transaminase was monitored in the absence or presence of lactate dehydrogenase. The results indicated that each monodirectional conversion of L-[3-3H]alanine to [3-3H]pyruvate resulted in the generation of 3HOH at a rate representing one-third of the total 3H flux. No isotopic discrimination in reaction velocity between tritiated and 14C-labelled L-alanine was observed. The mathematical modelling of the reaction revealed that, as a consequence of the detritiation process, the steady-state ratio in L-[3-3H]alanine/[3-3H]pyruvate does not inform on either the absolute or relative size of the amino acid and 2-keto acid pools.  相似文献   

12.
Rat olfactory adenylyl cyclase has been identified by means of a monoclonal antibody BBC-2, which reacts with both Ca2+/calmodulin-sensitive and -insensitive forms of adenylyl cyclase (Mollner, S., and Pfeuffer, T. (1988) Eur. J. Biochem. 171, 265-271). The antibody recognized a 180-kDa polypeptide in olfactory cilia but not in decilitated olfactory epithelial membranes. A protein of the same mobility was observed when olfactory adenylyl cyclase was purified by forskolin-agarose affinity chromatography followed by radioiodination. Its identity was further established by cross-linking to [32P]ADP-ribosylated Gs alpha (GTP-binding protein), to yield a single radiolabeled product of Mr approximately 220. Olfactory adenylyl cyclase has a approximately 3-fold higher turnover number, as assessed from stoichiometric binding of [35S]guanosine 5'-(3-O-thio)triphosphate. Therefore, the considerably higher specific adenylyl cyclase activity in olfactory cilia must be due to a approximately 100-fold higher molar concentration of enzyme in this tissue.  相似文献   

13.
The regional distribution of NG-nitro-l-[3H]arginine (L-[3H]NOARG) binding to different regions of rat brain was studied by quantitative autoradiography. These studies revealed highest density of binding sites in cerebellum, anterior olfactory nucleus, islands of Calleja and substantia nigra with appreciable binding site densities in inferior colliculus, superior colliculus, olfactory tubercle and dorsal tegmental nucleus. The regional distribution of L-[3H]NOARG binding, is in good agreement with the distribution of nitric oxide synthase studied previously by NADPH-diaphorase staining and immunohistochemistry using antibodies against neuronal nitric oxide synthase. The kinetics of L-[3H]NOARG binding to the cytosolic preparations of cerebral cortex, cerebellum, hippocampus and striatum was studied using an in vitro binding technique. Specific L-[3H]NOARG binding was of nanomolar affinity, saturable, and best fit to a single-site model in all four brain regions. These studies support the potential use of L-[3H]NOARG binding as a tool for further elucidation of the regional distribution and functional properties of NOS in the central nervous system.  相似文献   

14.
In Escherichia coli, taxis to certain chemoeffectors is mediated through an intrinsic membrane protein called methyl-accepting chemotaxis protein I (MCP I), which is the product of the tsr gene. Mutants were selected that are defective in taxis toward all MCP I-mediated attractants (alpha-aminoisobutyrate, L-alanine, glycine, and L-serine) but are normal to MCP I-mediated repellents and to chemoeffectors mediated by other MCPs. The mutants could be divided into two classes based on their ability to respond to various concentrations of L-serine. Two MCP I-mediated L-serine systems appear to function in the wild type: one of high and one of lower affinity. The mutations responsible for the serine taxis defects map at about 99 min on the E. coli chromosome and are not complemented by episomes carrying mutations in the tsr gene; this suggests that they are defective in tsr function. Low concentrations of L-[14C]serine specifically bound to wild-type membranes with a Km of 5 microM; in contrast, there was greatly decreased binding to vesicles prepared from the new mutants or from the tsr mutant AW518. Binding of labeled serine to wild-type vesicles was inhibited by MCP I-mediated attractants, but not by MCP II-mediated attractants. The data suggest that MCP I may function as the L-serine chemoreceptor in E. coli.  相似文献   

15.
Specific stereoselective binding of [3H]L-glutamate was detected to membranes prepared from housefly thorax to which were added several antiproteases. A single high affinity binding site was detected (KD 0.5 +/- 0.04 microM), but total binding varied from preparation to preparation (5-60 pmoles/mg protein). Specific binding was inhibited by preincubation of the membranes with trypsin, chymotrypsin or protease, or by exposure to 70 degrees C for 5 min. It was also inhibited by several compounds, the most potent being L-glutamate and L-aspartate, followed by L-glutamate diethylester, then D-glutamate, N-methyl-D-aspartate and ibotenate. Quisqualate had little effect, while kainate, proctolin and D-aspartate had none. d-Tubocurarine stimulated [3H]L-glutamate binding. The data suggest that [3H]L-glutamate is binding to an L-glutamate receptor in housefly thoracic muscle membranes.  相似文献   

16.
Specific binding of L-[3H]glutamate was investigated with a thoroughly washed synaptic membrane preparation from rat hippocampal formation, a region of brain densely innervated by putatively glutamatergic fibers. L-[3H]Glutamate bound rapidly, saturably, and reversibly to these membranes in the absence of Na+. Specific binding was greatest around 38 degrees C and at a slightly acidic pH. Saturation isotherms fit a model of two independent binding sites with dissociation constants of 11 and 570 nM and corresponding densities of 2.5 and 47 pmol/mg protein. All potent amino acid excitants, except N-methyl-D-aspartate and kainate, and several excitatory amino acid antagonists inhibited specific radioligand binding with IC50 values between 10(-7) M and 10(-4) M. In contrast, weak amino acid excitants and an inhibitor of glutamate uptake were nearly inactive. Displacement curves were analyzed with a computer program that assumed the simultaneous contributions of two independent sites at which each compound competitively inhibited the binding of L-[3H]glutamate. According to this analysis, ibotenate and the L- and D-isomers of glutamate and aspartate bind preferentially to the high-affinity site, whereas quisqualate, L-alpha-aminoadipate, and the L- and D-isomers of homocysteate bind preferentially to the low-affinity site. With the notable exception of gamma-D-glutamylglycine, all of the more potent antagonists appear to bind preferentially to the low-affinity site. Both sites exhibit marked stereoselectivity for L-glutamate. D- and L-Homocysteate and most excitatory amino acid antagonists increased specific binding at concentrations below those required to demonstrate inhibition. Some properties of the low-affinity binding site resemble those of junctional glutamate receptors on insect muscle, but neither site appears to correspond to the "N-methyl-D-aspartate receptor" or the "quisqualate receptor."  相似文献   

17.
Available information on the fate and insulinotropic action of L-alanine in isolated pancreatic islets is restricted to data collected in obese hyperglycemic mice. Recent data, however, collected mostly in tumoral islet cells of either the RINm5F line or BRIN-BD11 line, have drawn attention to the possible role of Na(+) co-transport in the insulinotropic action of L-alanine. In the present study conducted in islets prepared from normal adult rats, L-alanine was found (i) to inhibit pyruvate kinase in islet homogenates, (ii) not to affect the oxidation of endogenous fatty acids in islets prelabelled with [U-14C]palmitate, (iii) to stimulate 45Ca uptake in islets deprived of any other exogenous nutrient, and (iv) to augment insulin release evoked by either 2-ketoisocaproate or L-leucine, whilst failing to significantly affect glucose-induced insulin secretion. The oxidation of L-[U-14C]alanine was unaffected by D-glucose, but inhibited by L-leucine. Inversely, L-alanine decreased the oxidation of D-[U-14C]glucose, but failed to affect L-[U-14C]leucine oxidation. It is concluded that the occurrence of a positive insulinotropic action of L-alanine is restricted to selected experimental conditions, the secretory data being compatible with the view that stimulation of insulin secretion by the tested nutrient(s) reflects, as a rule, their capacity to augment ATP generation in the islet B cells. However, the possible role of Na(+) co-transport in the secretory response to L-alanine cannot be ignored.  相似文献   

18.
Canalicular plasma membranes were isolated from rat liver homogenates using nitrogen cavitation and calcium precipitation methods. Compared with homogenates, the membranes were enriched 55- to 56-fold in gamma-glutamyltransferase, aminopeptidase M, and alkaline phosphatase activities and showed very low enrichment in markers of other membranes. By electron microscopy, the membrane preparation contained neither junctional complexes nor contaminating organelles and consisted exclusively of vesicles. The presence of vesicles was also evident from the osmotic sensitivity of D-[6-3H]glucose uptake into the membrane preparation. Antisera obtained from rabbits immunized with highly purified rat kidney gamma-glutamyltransferase inhibited the transferase activity of intact or Triton X-100-solubilized membranes by 45-55%. Treatment of vesicles with anti-gamma-glutamyltransferase antisera and anti-rabbit IgG antisera increased the apparent density of the membranes during sucrose density gradient centrifugation. gamma-Glutamyltransferase and aminopeptidase M activities were selectively removed from the vesicles by limited proteolysis with papain without changing the intravesicular space or alkaline phosphatase activity of the membranes. Specific binding of anti-gamma-glutamyltransferase antibody to the outer surface of isolated hepatocytes was observed as measured by the antisera and 125I-labeled protein A; binding followed saturation kinetics with respect to antibody concentration. These data indicate that the isolated canalicular membrane vesicles are exclusively oriented right-side-out and that gamma-glutamyltransferase and aminopeptidase M are located on the luminal side of rat liver canalicular plasma membranes.  相似文献   

19.
Summary Cilia isolated fromParamecium tetraurelia possess a specific, high affinity L-[3H]glutamic acid binding site, defined by an ED50 of 3.0×10–8 M. The structural specificity of this site was probed by testing the competition between L-glutamate and various analogues for binding to cilia. The binding site is stereo-specific for L-glutamic acid, and requires the presence of all three ionizable groups on the glutamate molecule for optimal ligand: receptor interaction.Specific binding of L-[3H]glutamic acid to cilia is rapid in onset but transient, reaching peak values within 6 min, and then declining thereafter. This transience may represent a form of sensory adaptation during prolonged exposure to the ligand.  相似文献   

20.
The binding of [3H]flunitrazepam and [3H]RO5-4864 was measured in unwashed brain homogenates and in extensively washed brain membranes from amygdala-kindled and "yoked" control rats sacrificed 2 weeks following the sixth stage 5 convulsion. In unwashed homogenates, [3H]flunitrazepam binding was reduced in both the hypothalamus and ipsilateral right cortex of kindled rats (unchanged in other areas). In washed brain membranes, [3H]flunitrazepam binding was unaltered in these regions; it was bilaterally elevated, however, in both the amygdala and hippocampus (unchanged in other areas). In washed membranes, the in vitro addition of gamma-aminobutyric acid enhanced [3H]flunitrazepam binding to a similar extent in kindled and control membranes. These data indicate that the type of benzodiazepine binding abnormality observed after kindling depends on the type of tissue preparation employed in the assay procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号