首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Comparative CD and Fourier transform ir (FTIR) spectroscopic data on N-Boc protected linear peptides with or without the (Pro-Gly) β-turn motif (e.g., Boc-Tyr-Pro-Gly-Phe-Leu-OH and Boc-Tyr-Gly-Pro-Phe-Leu-OH) are reported herein. The CD spectra, reflecting both backbone and aromatic contributions, were not found to be characteristic of the presence of β-turns. In the amide I region of the FTIR spectra, analyzed by self-deconvolution and curve-fitting methods, the β-turn band shewed up between 1639 and 1633 cm?1 in trifluoroethanol (TFE) but only for models containing the (Pro-Gly) core. This band war-also present in the spectra in chloroform but absent in dimethylsulfoxide. These findings, in agreement with recent ir data on cyclic models and 310-helical polypeptides and protein in D2O [see S. J. Prestrelski, D. M. Byler, and M. P. Thompson (1991), International Journal of Peptide and Protein Research, Vol. 37, pp. 508–512; H. H. Mantsch, A. Perczel. M. Hollósi, and G. D. Fasman (1992), FASEB Journal, Vol. 6, p. A341; H. H. Mantsch. A. Perczel, M. Hollósi, and G. Fasman (1992), Biopolymers. Vol. 33, pp. 201–207; S. M. Miick, G. V. Martinez, W. R. Fiori, A. P. Tedd, and G. L. Millhauser (1992). Nature, Vol. 359, pp. 653–655], suggest that the amide I band, with a major contribution from the acceptor C ? O of the 1 ← 4 intramolecular H bond of β-turns, appears near or below 1640 cm?1, rather than above 1660 cm?1. In TFE, bands between 1670 and 1660 cm?1 are mainly due to “free” carbonyls, that is, C ? O's of amides that are solvated but not involved in the characteristic H bonds of periodic secondary structures or β-turns. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The Raman spectra of collagen, gelatin, and elastin are presented. The Raman lines in the latter two spectra are assigned by deuterating the amide N-H groups in gelatin and by studying the superposition spectra of the constituent amino acids. Two lines appear at 1271 and 1248 cm?1 in the spectra of collagen and gelatin that can be assigned to the amide III mode. Possibly, the appearance of two amide III lines is related to the biphasic nature of the tropocollagen molecule, i.e., proline-rich (nonpolar) and proline-poor (polar) regions distributed along the chain. The melting, or collagen-to-gelatin transition, in water-soluble calf skin collagen is studied and the 1248-cm?1 amide III line is assigned to the 31 helical regions of the tropocollagen molecule. Elastin is thought to be mostly random and the Raman spectrum confirms this assertion. Strong amide I and III lines appear at 1668 and 1254 cm?1, respectively, and only weak scattering is observed at 938 cm?1. These features have been shown to be characteristic of the disordered conformation in proteins.  相似文献   

4.
P. C. Painter  J. L. Koenig 《Biopolymers》1976,15(11):2155-2166
The Raman spectra of ovalbumin, ovomucoid, and conalbumin are reported. Spectral shifts in the conformationally sensitive amide I and amide III lines as a result of thermal denaturation indicate the formation of intermolecular β- sheets. A medium intensity line at 1260 cm?1 in the spectra of ovomucoid and ribonuclease is demonstrated to contain a substantial contribution from tyrosine residues.  相似文献   

5.
The Raman spectra of Bence-Jones proteins (BJP) were measured for their native and denatured states. All of the native BJPs investigated gave amide I at 1670–1675 cm?1 and amide III at 1242–1246 cm?1. Although the amide I was shifted to 1667 cm?1 upon the LiBr, acid, and thermal denaturation, as expected, the amide III frequency was unaltered, indicating that the antiparallel β- and disordered structures of BJP provide amide III at almost the same frequencies. The intensity of the 880-cm?1 line of native BJP was relatively intense compared with that of amino acid mixed solution in which the mole ratios of Trp, Phe, and Tyr were adjusted to reproduce the corresponding ratios of BJP. However, the intensity was evidently reduced upon LiBr, acid, and thermal denaturation, approaching that of the amino acid mixture. Thus, the intensity of the 880-cm?1 line is proposed as a practical probe for the environment of Trp residues. The pH dependence of the intensity of the 880-cm?1 line suggests that one of two buried Trp residues is exposed between pH 4 and 3.2 and the other between pH 3.2 and 1.4. The variable fragment (VL) of BJP (Tod) exhibited a S? S stretching Raman line at 525 cm?1. Provided that the crystallographic data of the VL of BJP is applicable to VL of BJP (Tod), the 525 cm?1 of the S? S stretching frequency should be assigned to a TGG conformation of linkage, but not to the AGT or AGG conformation. This supports Sugeta's model rather than Scheraga's model.  相似文献   

6.
The normal modes have been calculated for structures having the dihedral angles of the four β-turns of insulin. Frequencies are predicted in the amide I region near 1652 and 1680 cm?1. The former overlaps the α-helix band at 1658 cm?1 in the Raman spectrum, while the latter accounts for the hitherto unassignable band at 1681 cm?1. Calculated amide III frequencies extend above 1300 cm?1, providing a compelling assignment of the 1303-cm?1 band in insulin and similar bands in other globular proteins.  相似文献   

7.
The synthetic, zwitterionic bacterial cell wall peptides—D -Gluγ-L-Lys, D -Gluγ-L-Lys-D -Ala, D -Gluγ-L-Lys-D -Ala-D -Ala, and L-Ala-D -Gluγ-L-Lys-D -Ala-D -Ala—have been investigated in the crystalline and aqueous solution state applying ir and Raman spectroscopy. Additionally, aqueous solutions of the tetra- and pentapeptide have been investigated by CD spectroscopic techniques. Apart from the dipeptide, whose spectral features were dominated by end-group vibrations, the corresponding ir and Raman active bands of the crystalline peptides in the amide and skeletal regions were found at similar wave numbers, thus suggesting an analogous three-dimensional structure of these compounds. Dominant amide A, I, II, and III bands near 3275, 1630, 1540, and 1220–1250 cm?1, respectively, in the ir are interpreted in favor of an intermolecularly hydrogen-bonded, β-like structure. The absence of any amide components near 1680–1690 cm?1, together with the presence of strong amide bands near 1630 cm?1, and weak bands near 1660 cm?1 in the ir, which, conversely, were found in the Raman spectra as weak and strong bands, but at corresponding wave numbers, is taken as strong evidence for the presence of the unusual, parallel-arranged β-structure. On the basis of comparative theoretical considerations, a parallel-arranged, “β-type ring” conformation [P. De Santis, S. Morosetti, and R. Rizzo (1974) Macromolecules 7 , 52–58] is hypothesized. The solubilized peptides exhibited distinct similarities with their crystalline counterparts in respect to frequency values and relative intensities of the corresponding ir and Raman-active amide I/I′ components, and of some Raman bands in the skeletal region. This is interpreted in terms of residual short-range order, persisting even in aqueous solution. We concluded that the peptides show a strong propensity to form hydrated, strongly associated aggregates in water. On the basis of amide I/I′ band positions, stable, intramolecular interactions via the amide groups are discarded for the solubilized peptides. Complementarily, the CD data obtained suggest the presence of weakly bent, “open-turn”-like structures for the tetra- and pentapeptide in aqueous solution.  相似文献   

8.
Outer and cytoplasmic membranes of Escherichia coli were prepared by a method based on isopyenic centrifugation on a sucrose gradient. The infrared spectra of solid films of these membranes were studied. The cytoplasmic membrane had an amide I band at 1657 cm?1 and an amide II band at 1548 cm?1. The outer membrane had a broad amide I band at 1631–1657 cm?1 and an amid II band at 1548 cm?1 with a shoulder at 1520–1530 cm?1. Upon deuteration, the amide I band of the cytoplasmic membrane shifted to 1648 cm?1, whereas the band at 1631 cm?1 of the outer membrane remained unchanged. After extraction of lipids with chloroform and methanol, the infrared spectra in the amide I and amide II regions of both membranes remained unchanged. Although the outer membrane specifically contained lipopolysaccharide, this could not account for the difference in the infrared spectra of outer and cytoplasmic membranes. It is concluded that a large portion of proteins in the outer membrane is a β-structured polypeptide, while this conformation is found less, if at all in the cytoplasmic membrane.  相似文献   

9.
The Raman spectrum of polycytidylic acid was investigated in the pH range of 6.6–4.1. The thermal melting temperatures and the nature of the thermal melting profiles change in this range as monitored by the three Raman band envelopes, which include the 780-, 805-cm?1 bands, the 1190-, 1285-cm?1 bands, and the 1527-cm?1 band. By coupling these data with the theory of Raman scattering intensity and quantitative pH profiles for cytidine, it is shown that the band envelopes studied exhibit specific, yet different information regarding the thermal melting process. The band envelopes at 1170–1310 and 1527 cm?1, which are a sensitive function of both the extent of protonation and base stacking (hypochromic), reveal Tm values which agree with values derived from uv melting profiles. The 760–830-cm?1 envelope, which is not directly sensitive to cytosine residue protonation, but includes information associated with base stacking (the 780-cm?1 band) and the nature of the phosphodiester backbone (the frequency-dependent 805-cm?1 component), exhibits Tm values which deviate from the values obtained from the other bands. The observed differences are pH-dependent and correlate well with the extent of deprotonation that takes place in the denaturation process. Details of the spectrum of neutral and protonated poly(C) from pH 7 to 4.1 are discussed and related to the nature of the thermal denaturation process.  相似文献   

10.
Examination of the secondary structure of proteins by deconvolved FTIR spectra   总被引:70,自引:0,他引:70  
D M Byler  H Susi 《Biopolymers》1986,25(3):469-487
Fourier transform ir (FTIR) spectra of 21 globular proteins have been obtained at 2 cm?1 resolution from 1600 to 1700 cm?1 in deuterium oxide solution. Fourier self-deconvolution was applied to all spectra, revealing that the amide I band of each protein except casein consists of six to nine components. The components are observed at 11 well-defined frequencies, although all proteins do not exhibit components at every characteristic frequency. The root mean square (RMS) deviation of 124 individual values from the 11 average characteristic frequencies is 1.9 cm?1. The observed components are assigned to helical segments, extended beta-segments, unordered segments, and turns. Segments with similar structures do not necessarily exhibit band components with identical frequencies. For instance, the lower frequency beta-structure band can vary within a range of approximately 15 cm?1. The relative areas of the individual components of the deconvolved spectra were determined by a Gauss–Newton, iterative curve-fitting procedure that assumed Gaussian band envelopes for the deconvolved components. The measured areas were used to estimate the percentage of helix and beta-structure for each of 21 globular proteins. The results are in good general agreement with values derived from x-ray data by Levitt and Greer. The RMS deviation between 22 values (alpha- and beta-content of 11 beta-rich proteins measured by both techniques) is 2.5 percentage points; the maximum absolute deviation is 4 percentage points.  相似文献   

11.
Raman spectroscopy has been used in investigating the conformational transitions of poly-L -alanine (PLA) induced by mechanical deformation. We see evidence of the alpha-helical, antiparallel beta-sheet, and a disordered conformation in PLA. The disordered conformation has not been discussed in previous infrared and X-ray diffraction investigations and may have local order similar to the left-handed 31 poly glycine helix. The amide III mode in the Raman spectrum of PLA is more sensitive than the amide I and II modes to changes in secondary structure of the polypeptide chain. Several lines below 1200 cm?1 are conformationally sensitive and may generally be useful in the analysis of Raman spectra of proteins. A line at 909 cm?1 decreases in intensity after deformation of PLA. In general only weak scattering is observed around 900 cm?1 in the Raman spectra of antiparallel beta-sheet polypeptides. The Raman spectra of the amide N–H deuterated PLA and poly-L -leucine (PLL) in the alpha-helical conformation and poly-L -valine (PLV) in the beta-sheet conformation are presented. Splitting is observed in the amide III mode of PLV and the components of this mode are assigned. The Raman spectrum of an alpha-helical random copolymer of L -leucine and L -glutamic acid is shown to be consistent with the spectra of other alphahelical polypeptides.  相似文献   

12.
B G Frushour  J L Koenig 《Biopolymers》1974,13(9):1809-1819
Raman spectra of the pH denaturation of tropomyosin are presented. In the native state tropomyosin has an alpha-helical content of nearly 90%, but this value drops rapidly as the pH is raised above 9.5. The Raman spectrum of the native state is characterized by a strong amide I line appearing at 1655 cm?1, very weak scattering in the amide III region around 1250 cm?1, and a medium-intensity line at 940 cm?1. When the protein is pH-denatured, a strong amide III line appears at 1254 cm?1 and the 940 cm?1 line becomes weak. The intensities of the latter two lines are a sensitive measure of the alpha-helical and disordered chain content. These results are consistent with the helix-to-coil studies of the polypeptides. The Raman spectra of α-casein and prothrombin, proteins thought to have little or no ordered secondary structure, are investigated. The amide III regions of both spectra display strong lines at 1254 cm?1 and only weak scattering is observed at 940 cm?1, features characteristic of the denatured tropomyosin spectrum. The amide I mode of α-casein appears at 1668 cm?1, in agreement with the previously reported spectra of disordered polypeptides, poly-L -glutamic acid and poly-L -lysine at pH 7.0 and mechanically deformed poly-L -alanine.  相似文献   

13.
Fourier transform infrared (FT‐IR) spectroscopy combined with 2D correlation spectroscopy has been used to offer some information about stability and structure of some soluble elastins. Temperature has been chosen as the perturbation to monitor the infrared behavior of various soluble elastins, namely, α‐elastin p, α‐elastin, and k‐elastin. In the 3800–2700 cm?1 region, the H‐containing groups were analyzed. The bonded hydroxyls are found to decrease prior to the NH‐related hydrogen bonds and also to the conformational reorganization of hydrocarbon chains. The transition temperatures were evaluated and they were found to agree with those obtained from DSC data. The FTIR spectra and their 2nd derivatives denote that α‐ elastins exhibited amide‐I, ‐II and ‐III bands at 1656, 1539 and 1236 cm?1, respectively, while in k‐elastin these bands were found at 1652 cm?1 for amide I, 1540 cm?1 for amide II and 1248 cm?1 for amide III. The macroscopic IR finger‐print method, which combines: general IR spectra, secondary derivative spectra, and 2D‐IR correlation spectra, is useful to discriminate different elastins. Thus using the differences of the position and intensity of the bands from “fingerprint region” of studied elastins, which include the peaks assigned to C?O, C? C groups from α‐helix, β‐turn, and the peaks assigned to the amide groups, it is possible to identify and discriminate elastins from each others. Furthermore, the pattern of 2D‐IR correlation spectra under thermal perturbation, allow their direct identification and discrimination. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1072–1084, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
C. P. Beetz  G. Ascarelli 《Biopolymers》1982,21(8):1569-1586
We have measured the ir absorption of 5′CMP, 5′IMP, and poly(I)·poly(C) from ~25 to ~500 cm?1. From a comparison of the data with the previously measured absorption of the corresponding nucleosides and bases we can identify several “lines” associated with the deformation of the ribose ring. Out-of-plane deformation of the bases contributes strongly to vibrations near 200 cm?1. The same ribose vibrations observed in the nucleotides are found in poly(I)·poly(C). They sharpen with increasing water absorption. A study of the spectra of poly(I)·poly(C) as a function of the adsorbed water indicates that water does not contribute in a purely additive fashion to the polynucleotide spectrum but depends on the conformation of the helix. However, the only spectral feature that shifts drastically with conformation is near 45 cm?1. Measurements at cryogenic temperatures indicate some sharpening of the spectrum of poly(I)·poly(C). Instead, no sharpening is observed in the spectrum of the nucleotides. Shear degradation of poly(I)·poly(C) produces significant spectral changes in the 200-cm?1 region and sharpening of the features assigned to the low-frequency ribose-ring vibrations.  相似文献   

15.
The ultraviolet absorption, linear dichroism, circular dichroism, and oriented circular dichroism of collagen are reported and the spectra are resolved into a self-consistent set of bands in accord with exciton theory. The parallel band at 200 nm has 40% of the π → π* intensity; the perpendicular band is placed at 189 nm yielding a splitting of 2700 cm?1. The circular dichroism is resolved into two Gaussians at λ and λτ (rotational strengths +14 × 10?40 and ?32 × 10?40 esu2. cm2) plus a large non-Gaussian (“helix”) band with ampplitude ?25,000° at 201 nm. These data appear to be in reasonably good accord with recent calculations. Measurements of the absorption, linear dichroism and circular dichroism of polyproline I and II are also reported and are resolved into their component bands. Polyproline I is in good accord with exciton theory, whereas polyproline II remains unsatisfactory.  相似文献   

16.
In order to analyze the melting behavior of 5′-rGMP gel at acidic pH and self-aggregate near neutral pH we have obtained Raman spectra of aqueous solutions of 5′-rGMP at various temperatures. At low temperature the intensities of Raman peaks at 502, 585, 1083, 1179, 1322, 1366, 1487, and 1578 cm?1 decrease due to the formation of ordered structure (Raman hypochromism). In contrast, the peaks at 671, 725, 813, and 1338 cm?1 become stronger at low temperature (Raman hyperchromism). The Raman hyperchromism of the 671- and 813-cm?1 peaks have been explained in terms of detailed structural models. Recently, the 668- and 682-cm?1 peaks in the Raman spectrum of aqueous 5′-rGMP solution have been attributed to the guanine ring breathing vibrations in C3′- and C2′-endo conformers [Benevides, J. B., Lemur, D. & Thomas, G. J., Jr. (1984) Biopolymers 23 , 1011–1024]. On the basis of this information our Raman data can be interpreted to suggest that the continuous helix model of 5′-rGMP gel is right-handed. The 1487-cm?1 peak intensity has been used to monitor the melting profies at several pHs. Near neutral pH the melting profile shows a single transition, whereas at acidic pH it shows two transitions. From these observations we propose possible pathways for the melting of 5′-rGMP gel formed at acidic pH and self-aggregate formed near neutral pH.  相似文献   

17.
We investigated the effect of pressure on the helix–coil transition of an Ala-rich peptide (AK16: YGAAKAAAAKAAAAKA-NH2) in aqueous solution by FT-IR spectroscopy. The spectra of the amide I' region of AK16 in aqueous solution was decomposed into some component bands using a curve fitting method. The peak at around 1635 cm ?1 corresponding to the solvent exposed α-helix conformer increases with increasing pressures, while the peak at around 1655 cm ?1 corresponding to the random coil conformer decreases. From the pressure dependence of the band intensities, we determined the volume change from the α-helix to random coil conformers of AK16 to be + 10.5 ± 0.3 cm3/mol. The positive volume change is different from the negative volume change generally observed in the pressure denaturation of proteins.  相似文献   

18.
The Raman spectrum of chemically denatured lysozyme was studied. The denaturants studied included dimethyl sulfoxide, LiBr, guanidine · HCl, sodium dodecyl sulfate, and urea. Previous studies have shown that the amide I and amide III regions of the Raman spectrum are sensitive to the nature of the hydrogen bond involving the amide group. The intensity of the amide III band at 1260 cm?1 (assigned to strongly hydrogen-bonded α-helix structure) relative to the intensity of the amide III band near 1240 cm?1 (assigned to less strongly hydrogen-bonded groups) is used as a parameter for comparison with other physical parameters used to assess denaturation. The correlation between this Raman parameter and denaturation as evidenced by enzyme activity and viscosity measurements is good, leading to the conclusion that the amide III Raman spectrum is useful for assessing the degree of denaturation. The Raman spectrum clearly depends on the type of denaturant employed, suggesting that there is not one unique denatured state for lysozyme. The data, as interpreted, place constraints on the possible models for lysozyme denaturation. One of these is that the simple two-state model does not seem consistent with the observed Raman spectral changes.  相似文献   

19.
To investigate molecular effects of 1‐Ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC), EDC/N‐hydroxysuccinimide (NHS), glyceraldehyde cross‐linking as well as polymerization temperature and concentration on the three‐dimensional (3D) collagen hydrogels, we analyzed the structures in situ by Raman microspectroscopy. The increased intensity of the 814 and 936 cm?1 Raman bands corresponding to the C—C stretch of a protein backbone and a shift in the amide III bands from 1241 cm?1/1268 cm?1 in controls to 1247 cm?1/1283 cm?1 in glyceraldehyde‐treated gels indicated changes to the alignment of the collagen molecules, fibrils/fibers and/or changes to the secondary structure on glyceraldehyde treatment. The increased intensity of 1450 cm?1 band and the appearance of a strong peak at 1468 cm?1 reflected a change in the motion of lysine/arginine CH2 groups. For the EDC‐treated collagen hydrogels, the increased intensity of 823 cm?1 peak corresponding to the C—C stretch of the protein backbone indicated that EDC also changed the packing of collagen molecules. The 23% decrease in the ratio of 1238 cm?1 to 1271 cm?1 amide III band intensities in the EDC‐modified samples compared with the controls indicated changes to the alignment of the collagen molecules/fibrils and/or the secondary structure. A change in the motion of lysine/arginine CH2 groups was detected as well. The addition of NHS did not induce additional Raman shifts compared to the effect of EDC alone with the exception of a 1416 cm?1 band corresponding to a COO? stretch. Overall, the Raman spectra suggest that glyceraldehyde affects the collagen states within 3D hydrogels to a greater extent compared to EDC and the effects of temperature and concentration are minimal and/or not detectable. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 349–356, 2013.  相似文献   

20.
Raman spectra are presented for sarcoplasmic reticulum membranes. Interpretation of the 1000–1130 cm?1 region of the spectrum indicates that the sarcoplasmic reticulum membrane may be more fluid than erythrocyte membranes that have been examined by the same technique. The fluidity of the membrane also manifests itself in the amide I portion of the membrane spectrum with a strong 1658 cm?1 band characteristic of CC stretching in hydrocarbon side chains exhibiting cis conformation. This band is unaltered in intensity and position in H2O and in 2H2O thus obscuring amide I protein conformation. Of particular interest is the appearance of strong, resonantly enhanced bands at 1160 and 1527 cm?1 attributable to membrane-associated carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号