首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
Lu TL  Kuo FT  Lu TJ  Hsu CY  Fu HW 《Cellular signalling》2006,18(11):1977-1987
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, has been correlated with cell proliferation. PAR1 is activated by the irreversibly proteolytic cleavage, internalized via clathrin-coated pits, and then sorted to lysosomes for degradation. Caveolae play important roles in both signaling transduction and internalization of several GPCRs. However, the role of caveolae in cellular signaling and trafficking of PAR1 is still unclear. In this study, we show that PAR1 was partially localized in caveolae. Disruption of caveolae by cholesterol depletion did not inhibit PAR1 internalization, indicating that internalization of PAR1 was not via caveolae. Of interest, activation of PAR1 resulted in the phosphorylation of caveolin-1, a principal component of caveolae, on tyrosine 14 by a Gi-linked Src kinase pathway and p38 mitogen-activated protein kinase. Analysis of immunoprecipitates from cells stimulated by PAR1 showed that phosphocaveolin-1 but not caveolin-1 with mutation at tyrosine 14 could bind to Csk. In addition, phosphocaveolin-1 could not bind to CskS109C mutant with the defective SH2 domain. These results indicated that phosphocaveolin-1 was associated with the SH2 domain of Csk in response to PAR1 activation. The association further resulted in a rapid decrease in Src kinase activity. Thus, PAR1-induced Src activation is negatively regulated by recruiting Csk through phosphocaveolin-1. Our results also reveal that phosphocaveolin-1 represents a novel effector of PAR1 to downregulate Src kinase activity. The downregulation of PAR1-induced Src activation mediated by phosphocaveolin-1 provides an additional mechanism for the termination of PAR1 signaling at its downstream molecules.  相似文献   

2.
PTP1B and TC-PTP are closely related protein tyrosine phosphatases, sharing 74% homology in their catalytic domain. However, their cellular localization, function, and regulation are found to be different. Their substrate specificity has implicated these enzymes in various signaling pathways, regulating metabolism, proliferation and cytokine signaling. For instance, PTP1B has been shown to regulate the activation of cytokine receptors through the dephosphorylation of specific members of the JAK family, namely JAK2 and TYK2, whereas TC-PTP is involved in the modulation of cytokine signaling via JAK1 and JAK3 molecules. Gene-targeting approaches will help us to unravel the physiological functions of these enzymes.  相似文献   

3.
Human platelets express the receptor for immunoglobulin G, FcgammaRIIa, that triggers cell aggregation upon interaction with immune complexes. Here, we report that the rapid tyrosine phosphorylation of the Linker for Activation of T-cell (LAT) in human platelets stimulated by FcgammaRIIa cross-linking was followed by its complete dephosphorylation in an alphaIIb/beta3 integrin-dependent manner. Concomitant to LAT dephosphorylation, the protein tyrosine phosphatase 1B (PTP1B) was activated through a mechanism involving its proteolysis by calpains downstream of integrins. Both PTP1B and LAT were associated with the actin cytoskeleton complex formed during platelet aggregation. Moreover, phospho-LAT appeared as a good substrate of activated PTP1B in vitro and these two proteins interacted upon platelet activation by FcgammaRIIa cross-linking. The permeant substrate-trapping PTP1B (TAT-PTP1B D181A) partly inhibited LAT dephosphorylation in human platelets, strongly suggesting that this tyrosine phosphatase was involved in this regulatory pathway. Using a pharmacological inhibitor, we provide evidence that PTP1B activation and LAT dephosphorylation processes were required for irreversible platelet aggregation. Altogether, our results demonstrate that PTP1B plays an important role in the integrin-mediated dephosphorylation of LAT in human platelets and is involved in the control of irreversible aggregation upon FcgammaRIIa stimulation.  相似文献   

4.
5.
Protein tyrosine phosphatase 1B (PTP1B) has been implicated as a negative regulator of multiple signaling pathways downstream of receptor tyrosine kinases. Gene-targeting studies in mice have established PTP1B as a major target in diabetes and obesity. Initially, inhibition of this enzyme was thought to potentially lead to increased oncogenic signaling, but mice lacking PTP1B do not develop tumors. Our recent results show that loss of PTP1B can lead to decreased Ras signaling, despite enhanced signaling of other pathways. Here, we discuss how these findings implicate PTP1B as a positive and negative regulator of oncogenesis.  相似文献   

6.
7.
Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling in a previously unrecognized manner.  相似文献   

8.
Protein tyrosine phosphatase 1B (PTP1B) has been implicated as a negative regulator of multiple signaling pathways downstream of receptor tyrosine kinases. Gene-targeting studies in mice have established PTP1B as a major target in diabetes and obesity. Initially, inhibition of this enzyme was thought to potentially lead to increased oncogenic signaling, but mice lacking PTP1B do not develop tumors. Our recent results show that loss of PTP1B can lead to decreased Ras signaling, despite enhanced signaling of other pathways. Here, we discuss how these findings implicate PTP1B as a positive and negative regulator of oncogenesis.  相似文献   

9.
Endothelial cells are subjected to hemodynamic shear stress, which regulates multiple vascular functions partially by the caveolin-1-dependent mechanisms. Caveolin-1 is a principal protein in the plasma membrane microdomains called caveolae and interacts with various signaling molecules. Recently, caveolin-1 was elucidated to be phosphorylated on tyrosine 14. However, it is not known how phosphorylation of caveolin-1 is controlled in endothelium. In this study, we found that caveolin-1 is phosphorylated by p38 mitogen-activated protein kinase (MAPK) under a static condition. When endothelial cells were exposed to shear stress, caveolin-1 was transiently dephosphorylated. Since the activity of p38 MAPK was not affected by shear stress, the shear-dependent dephosphorylation of caveolin-1 was not mediated by p38 MAPK. Of interest, sodium orthovanadate, an inhibitor for phosphatases, blocked the shear-dependent dephosphorylation of caveolin-1. We also observed that protein tyrosine phosphatase mu was transiently activated by shear stress, suggesting its role in the dephosphorylation of caveolin-1.  相似文献   

10.
Caveolin-2 is the least well studied member of the caveolin gene family. It is believed that caveolin-2 is an "accessory protein" that functions in conjunction with caveolin-1. At the level of the ER, caveolin-2 interacts with caveolin-1 to form a high molecular mass hetero-oligomeric complex that is targeted to lipid rafts and drives the formation of caveolae. However, caveolin-2 is not required for caveolae formation, implying that it may fulfill some unknown regulatory role. Here, we present the first evidence that caveolin-2 is a phosphoprotein. We show that caveolin-2 undergoes Src-induced phosphorylation on tyrosine 19. To study this phosphorylation event in vivo, we generated a novel phospho-specific antibody probe that only recognizes phosphocaveolin-2 (Tyr(P)(19)). We then used NIH-3T3 cells stably overexpressing c-Src to examine the localization and biochemical properties of phosphocaveolin-2 (Tyr(P)(19)). Our results indicate that phosphocaveolin-2 (Tyr(P)(19)) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. Instead, phosphocaveolin-2 (Tyr(P)(19)) behaves as a monomer/dimer in velocity gradients. Thus, we conclude that the tyrosine phosphorylation of caveolin-2 (Tyr(P)(19)) may function as a signal that is recognized by the cellular machinery to induce the dissociation of caveolin-2 from caveolin-1 oligomers. We also demonstrate that (i) insulin-stimulation of adipocytes and (ii) integrin ligation of endothelial cells can both induce the tyrosine phosphorylation of caveolin-2 (Tyr(P)(19)). During integrin ligation, phosphocaveolin-2 (Tyr(P)(19)) co-localizes with activated FAK at focal adhesions. Thus, phosphocaveolin-2 (Tyr(P)(19)) may function as a docking site for Src homology domain-2 (SH2) domain containing proteins during signal transduction. In support of this notion, we identify several SH2 domain containing proteins, namely c-Src, NCK, and Ras-GAP, that interact with caveolin-2 in a phosphorylation-dependent manner. Furthermore, our co-immunoprecipitation experiments show that caveolin-2 and Ras-GAP are constitutively associated in c-Src expressing NIH-3T3 cells, but not in untransfected NIH-3T3 cells.  相似文献   

11.
Rho GTPases are signal transduction effectors that control cell motility, cell attachment, and cell shape by the control of actin polymerization and tyrosine phosphorylation. To identify cellular targets regulated by Rho GTPases, we screened global protein responses to Rac1, Cdc42, and RhoA activation by two-dimensional gel electrophoresis and mass spectrometry. A total of 22 targets were identified of which 19 had never been previously linked to Rho GTPase pathways, providing novel insight into pathway function. One novel target of RhoA was protein-tyrosine phosphatase 1B (PTP1B), which catalyzes dephosphorylation of key signaling molecules in response to activation of diverse pathways. Subsequent analysis demonstrated that RhoA enhances post-translational modification of PTP1B, inactivates phosphotyrosine phosphatase activity, and up-regulates tyrosine phosphorylation of p130Cas, a key mediator of focal adhesion turnover and cell migration. Thus, protein profiling reveals a novel role for PTP1B as a mediator of RhoA-dependent phosphorylation of p130Cas.  相似文献   

12.
Caveolin-1 was first identified as a phosphoprotein in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. Tyrosine 14 is now thought to be the principal site for recognition by c-Src kinase; however, little is known about this phosphorylation event. Here, we generated a monoclonal antibody (mAb) probe that recognizes only tyrosine 14-phosphorylated caveolin-1. Using this approach, we show that caveolin-1 (Y14) is a specific tyrosine kinase substrate that is constitutively phosphorylated in Src- and Abl-transformed cells and transiently phosphorylated in a regulated fashion during growth factor signaling. We also provide evidence that tyrosine-phosphorylated caveolin-1 is localized at the major sites of tyrosine-kinase signaling, i.e. focal adhesions. By analogy with other signaling events, we hypothesized that caveolin-1 could serve as a docking site for pTyr-binding molecules. In support of this hypothesis, we show that phosphorylation of caveolin-1 on tyrosine 14 confers binding to Grb7 (an SH2-domain containing protein) both in vitro and in vivo. Furthermore, we demonstrate that binding of Grb7 to tyrosine 14-phosphorylated caveolin-1 functionally augments anchorage-independent growth and epidermal growth factor (EGF)-stimulated cell migration. We discuss the possible implications of our findings in the context of signal transduction.  相似文献   

13.
Many studies have illustrated that the production of reactive oxygen species (ROS) is important for optimal tyrosine phosphorylation and signaling in response to diverse stimuli. Protein-tyrosine phosphatases (PTPs), which are important regulators of signal transduction, are exquisitely sensitive to inhibition after generation of ROS, and reversible oxidation is becoming recognized as a general physiological mechanism for regulation of PTP function. Thus, production of ROS facilitates a tyrosine phosphorylation-dependent cellular signaling response by transiently inactivating those PTPs that normally suppress the signal. In this study, we have explored the importance of reversible PTP oxidation in the signaling response to insulin. Using a modified ingel PTP assay, we show that stimulation of cells with insulin resulted in the rapid and transient oxidation and inhibition of two distinct PTPs, which we have identified as PTP1B and TC45, the 45-kDa spliced variant of the T cell protein-tyrosine phosphatase. We investigated further the role of TC45 as a regulator of insulin signaling by combining RNA interference and the use of substrate-trapping mutants. We have shown that TC45 is an inhibitor of insulin signaling, recognizing the beta-subunit of the insulin receptor as a substrate. The data also suggest that this strategy, using ligand-induced oxidation to tag specific PTPs and using interference RNA and substrate-trapping mutants to illustrate their role as regulators of particular signal transduction pathways, may be applied broadly across the PTP family to explore function.  相似文献   

14.
Reassessing the role of phosphocaveolin-1 in cell adhesion and migration   总被引:1,自引:0,他引:1  
Although phosphorylation on tyrosine 14 was identified early in the discovery of caveolin-1, the functional significance of this modification still remains elusive. Recent evidence points to a role of caveolin-1 tyrosine 14 phosphorylation in cell adhesion and migration. These results are based on a variety of tools, including a widely used mouse monoclonal anti-phosphocaveolin-1 antibody, which labels, in cultured cells, a protein localized at or near focal adhesions. We here report results from three independent laboratories, showing that this antibody recognizes phosphocaveolin-1 amongst other proteins in immunoblot analyses and that the signal obtained with this antibody in immunostaining experiments is in part due to labeling of paxillin. Published data need to be interpreted keeping in mind that images of phosphocaveolin-1 cellular localization obtained using this antibody are not valid. We re-evaluate the current knowledge about the role of caveolin-1 in cell adhesion and migration in view of this new information.  相似文献   

15.
Catalytic proteins such as human protein tyrosine phosphatase 1B (PTP1B), with conserved and highly polar active sites, warrant the discovery of druggable nonactive sites, such as allosteric sites, and potentially, therapeutic small molecules that can bind to these sites. Catalyzing the dephosphorylation of numerous substrates, PTP1B is physiologically important in intracellular signal transduction pathways in diverse cell types and tissues. Aberrant PTP1B is associated with obesity, diabetes, cancers, and neurodegenerative disorders. Utilizing clustering methods (based on root mean square deviation, principal component analysis, nonnegative matrix factorization, and independent component analysis), we have examined multiple PTP1B structures. Using the resulting representative structures in different conformational states, we determined consensus clustroids and used them to identify both known and novel binding sites, some of which are potentially allosteric. We report several lead compounds that could potentially bind to the novel PTP1B binding sites and can be further optimized. Considering the possibility for drug repurposing, we discovered homologous binding sites in other proteins, with ligands that could potentially bind to the novel PTP1B binding sites.  相似文献   

16.
There is growing evidence that tyrosine phosphatases display an intrinsic enzymatic preference for the sequence context flanking the target phosphotyrosines. On the other hand, substrate selection in vivo is decisively guided by the enzyme-substrate connectivity in the protein interaction network. We describe here a system wide strategy to infer physiological substrates of protein-tyrosine phosphatases. Here we integrate, by a Bayesian model, proteome wide evidence about in vitro substrate preference, as determined by a novel high-density peptide chip technology, and "closeness" in the protein interaction network. This allows to rank candidate substrates of the human PTP1B phosphatase. Ultimately a variety of in vitro and in vivo approaches were used to verify the prediction that the tyrosine phosphorylation levels of five high-ranking substrates, PLC-γ1, Gab1, SHP2, EGFR, and SHP1, are indeed specifically modulated by PTP1B. In addition, we demonstrate that the PTP1B-mediated dephosphorylation of Gab1 negatively affects its EGF-induced association with the phosphatase SHP2. The dissociation of this signaling complex is accompanied by a decrease of ERK MAP kinase phosphorylation and activation.  相似文献   

17.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

18.
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.  相似文献   

19.
The protein tyrosine phosphatase PTP1B is responsible for negatively regulating insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor kinase (IRK) activation segment. Here, by integrating crystallographic, kinetic, and PTP1B peptide binding studies, we define the molecular specificity of this reaction. Extensive interactions are formed between PTP1B and the IRK sequence encompassing the tandem pTyr residues at 1162 and 1163 such that pTyr-1162 is selected at the catalytic site and pTyr-1163 is located within an adjacent pTyr recognition site. This selectivity is attributed to the 70-fold greater affinity for tandem pTyr-containing peptides relative to mono-pTyr peptides and predicts a hierarchical dephosphorylation process. Many elements of the PTP1B-IRK interaction are unique to PTP1B, indicating that it may be feasible to generate specific, small molecule inhibitors of this interaction to treat diabetes and obesity.  相似文献   

20.
Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号