首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much less is known about the contributions of the Na+/Ca2+ exchanger (NCX) and sarcoplasmic reticulum (SR) Ca2+ pump to cell relaxation in neonatal compared with adult mammalian ventricular myocytes. Based on both biochemical and molecular studies, there is evidence of a much higher density of NCX at birth that subsequently decreases during the next 2 wk of development. It has been hypothesized, therefore, that NCX plays a relatively more important role for cytosolic Ca2+ decline in neonates as well as, perhaps, a role in excitation-contraction coupling in reverse mode. We isolated neonatal ventricular myocytes from rabbits in four different age groups: 3, 6, 10, and 20 days of age. Using an amphotericin-perforated patch-clamp technique in fluo-3-loaded myocytes, we measured the caffeine-induced inward NCX current (INCX) and the Ca2+ transient. We found that the integral of INCX, an indicator of SR Ca2+ content, was greatest in myocytes from younger age groups when normalized by cell surface area and that it decreased with age. The velocity of Ca2+ extrusion by NCX (VNCX) was linear with [Ca2+] and did not indicate saturation kinetics until [Ca2+] reached 1–3 µM for each age group. There was a significantly greater time delay between the peaks of INCX and the Ca2+ transient in myocytes from the youngest age groups. This observation could be related to structural differences in the subsarcolemmal microdomains as a function of age. ontogeny of cardiac excitation-contraction coupling; sodium/calcium exchanger; cytosolic calcium concentration; subsarcolemmal calcium concentration; sarcoplasmic reticulum calcium content  相似文献   

2.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a trigger for pulmonary vasoconstriction and a stimulus for PASMC proliferation and migration. Multiple mechanisms are involved in regulating [Ca2+]cyt in human PASMC. The resting [Ca2+]cyt and Ca2+ entry are both increased in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH), which is believed to be a critical mechanism for sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in these patients. Here we report that protein expression of NCX1, an NCX family member of Na+/Ca2+ exchanger proteins is upregulated in PASMC from IPAH patients compared with PASMC from normal subjects and patients with other cardiopulmonary diseases. The Na+/Ca2+ exchanger operates in a forward (Ca2+ exit) and reverse (Ca2+ entry) mode. By activating the reverse mode of Na+/Ca2+ exchange, removal of extracellular Na+ caused a rapid increase in [Ca2+]cyt, which was significantly enhanced in IPAH PASMC compared with normal PASMC. Furthermore, passive depletion of intracellular Ca2+ stores using cyclopiazonic acid (10 µM) not only caused a rise in [Ca2+]cyt due to Ca2+ influx through store-operated Ca2+ channels but also mediated a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. The upregulated NCX1 in IPAH PASMC led to an enhanced Ca2+ entry via the reverse mode of Na+/Ca2+ exchange, but did not accelerate Ca2+ extrusion via the forward mode of Na+/Ca2+ exchange. These observations indicate that the upregulated NCX1 and enhanced Ca2+ entry via the reverse mode of Na+/Ca2+ exchange are an additional mechanism responsible for the elevated [Ca2+]cyt in PASMC from IPAH patients. transient receptor potential channel; reverse and forward mode; proliferation  相似文献   

3.
Pulmonary vasoconstriction and vascularmedial hypertrophy greatly contribute to the elevated pulmonaryvascular resistance in patients with pulmonary hypertension. A rise incytosolic free Ca2+ ([Ca2+]cyt)in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (Em) regulates[Ca2+]cyt by governing Ca2+influx through voltage-dependent Ca2+ channels. Thusintracellular Ca2+ may serve as a shared signaltransduction element that leads to pulmonary vasoconstriction andvascular remodeling. In PASMC, activity of voltage-gated K+(Kv) channels regulates resting Em. In thisstudy, we investigated whether changes of Kv currents[IK(V)], Em, and[Ca2+]cyt affect cell growth by comparingthese parameters in proliferating and growth-arrested PASMC. Serumdeprivation induced growth arrest of PASMC, whereas chelation ofextracellular Ca2+ abolished PASMC growth. Resting[Ca2+]cyt was significantly higher, andresting Em was more depolarized, inproliferating PASMC than in growth-arrested cells. Consistently, wholecell IK(V) was significantly attenuated in PASMCduring proliferation. Furthermore, Emdepolarization significantly increased resting[Ca2+]cyt and augmented agonist-mediatedrises in [Ca2+]cyt in the absence ofextracellular Ca2+. These results demonstrate that reducedIK(V), depolarized Em, and elevated [Ca2+]cyt may play a criticalrole in stimulating PASMC proliferation. Pulmonary vascular medialhypertrophy in patients with pulmonary hypertension may be partlycaused by a membrane depolarization-mediated increase in[Ca2+]cyt in PASMC.

  相似文献   

4.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

5.
Williams, Jay H. Contractile apparatus and sarcoplasmicreticulum function: effects of fatigue, recovery, and elevated Ca2+. J. Appl.Physiol. 83(2): 444-450, 1997.This investigationtested the notion that fatiguing stimulation induces intrinsic changes in the contractile apparatus and sarcoplasmic reticulum (SR) and thatthese changes are initiated by elevated intracellularCa2+ concentration([Ca2+]i).Immediately after stimulation of frog semitendinosus muscle, contractile apparatus and SR function were measured. Despite a largedecline in tetanic force (Po),maximal Ca2+-activated force(Fmax) of the contractileapparatus was not significantly altered. However,Ca2+ sensitivity was increased. Inconjunction, the rate constant ofCa2+ uptake by the SR wasdiminished, and the caffeine sensitivity ofCa2+ release was decreased. Duringrecovery, Po, contractileapparatus, and SR function each returned to near-initial levels.Exposure of skinned fibers to 0.5 µM freeCa2+ for 5 min depressed bothFmax andCa2+ sensitivity of thecontractile apparatus. In addition, caffeine sensitivity ofCa2+ release was diminished.Results suggest that fatigue induces intrinsic alterations incontractile apparatus and SR function. Changes in contractile apparatusfunction do not appear to be mediated by increased[Ca2+]i.However, a portion of the change in SRCa2+ release seems to be due toelevated[Ca2+]i.

  相似文献   

6.
Polyamines are essential for cell migrationduring early mucosal restitution after wounding in the gastrointestinaltract. Activity of voltage-gated K+ channels (Kv) controlsmembrane potential (Em) that regulates cytoplasmicfree Ca2+ concentration([Ca2+]cyt) by governing thedriving force for Ca2+ influx. This study determinedwhether polyamines are required for the stimulation of cell migrationby altering K+ channel gene expression,Em, and[Ca2+]cyt in intestinal epithelialcells (IEC-6). The specific inhibitor of polyamine synthesis,-difluoromethylornithine (DFMO, 5 mM), depleted cellularpolyamines (putrescine, spermidine, and spermine), selectivelyinhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression,and resulted in membrane depolarization. Because IEC-6 cells did notexpress voltage-gated Ca2+ channels, the depolarizedEm in DFMO-treated cells decreased [Ca2+]cyt as a result of reduceddriving force for Ca2+ influx through capacitativeCa2+ entry. Migration was reduced by 80% in thepolyamine-deficient cells. Exogenous spermidine not only reversed theeffects of DFMO on Kv1.1 channel expression, Em,and [Ca2+]cyt but also restoredcell migration to normal. Removal of extracellular Ca2+ orblockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cellmigration by exogenous spermidine in polyamine-deficient cells. Theseresults suggest that polyamine-dependent intestinal epithelial cellmigration may be due partially to an increase of Kv1.1 channelexpression. The subsequent membrane hyperpolarization raises[Ca2+]cyt by increasing the drivingforce (the electrochemical gradient) for Ca2+ influx andthus stimulates cell migration.

  相似文献   

7.
Earlymucosal restitution occurs by epithelial cell migration to resealsuperficial wounds after injury. Differentiated intestinal epithelialcells induced by forced expression of the Cdx2 gene migrateover the wounded edge much faster than undifferentiated parental cellsin an in vitro model. This study determined whether thesedifferentiated intestinal epithelial cells exhibit increased migrationby altering voltage-gated K+ (Kv) channel expression andcytosolic free Ca2+ concentration([Ca2+]cyt). StableCdx2-transfected IEC-6 cells (IEC-Cdx2L1) with highly differentiated phenotype expressed higher basal levels of Kv1.1 andKv1.5 mRNAs and proteins than parental IEC-6 cells. Neither IEC-Cdx2L1cells nor parental IEC-6 cells expressed voltage-dependent Ca2+ channels. The increased expression of Kv channels indifferentiated IEC-Cdx2L1 cells was associated with an increase inwhole cell K+ currents, membrane hyperpolarization, and arise in [Ca2+]cyt. The migration rates indifferentiated IEC-Cdx2L1 cells were about four times those of parentalIEC-6 cells. Inhibition of Kv channel expression by polyamine depletiondecreased [Ca2+]cyt, reduced myosin stressfibers, and inhibited cell migration. Elevation of[Ca2+]cyt by ionomycin promoted myosin IIstress fiber formation and increased cell migration. These resultssuggest that increased migration of differentiated intestinalepithelial cells is mediated, at least partially, by increasing Kvchannel activity and Ca2+ influx during restitution.

  相似文献   

8.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

9.
In cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca2+ current (ICa), provides a critical mechanism for the maintenance of Ca2+ homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97: 1288–1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (Ito) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak Ito was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased Ito, ECGs from KO mice exhibited shortened QT intervals. Expression of the Ito-generating K+ channel subunit Kv4.2 and the K+ channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378–1403, 2004) to determine the relative contributions of increased Ito, reduced ICa, and reduced NCX current (INCX) on the shape and kinetics of the AP. Reduction of ICa and elimination of INCX had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when Ito was increased in the computer model. Thus, the increase in Ito, and not the reduction of ICa or INCX, is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of Ito may comprise an important regulatory mechanism to limit Ca2+ influx via a reduction of AP duration, thus preventing Ca2+ overload in situations of reduced myocyte Ca2+ extrusion capacity. genetically altered mice; cardiac myocytes; short QT interval; transient outward current  相似文献   

10.
We previously reported thatlysoplasmenylcholine (LPlasC) altered the action potential (AP) andinduced afterdepolarizations in rabbit ventricular myocytes. In thisstudy, we investigated how LPlasC alters excitation-contractioncoupling using edge-motion detection, fura-PE3 fluorescent indicator,and perforated and whole cell patch-clamp techniques. LPlasC increasedcontraction, myofilament Ca2+ sensitivity, systolic anddiastolic free Ca2+ levels, and the magnitude ofCa2+ transients concomitant with increases in the maximumrates of shortening and relaxation of contraction and the rising anddeclining phases of Ca2+ transients. In some cells, LPlasCinduced arrhythmias in a pattern consistent with early and delayedaftercontractions. LPlasC also augmented the caffeine-inducedCa2+ transient with a reduction in the decay rate.Furthermore, LPlasC enhanced L-type Ca2+ channel current(ICa,L) and outward currents. LPlasC-induced alterations in contraction and ICa,L wereparalleled by its effect on the AP. Thus these results suggest thatLPlasC elicits distinct, potent positive inotropic, lusitropic, andarrhythmogenic effects, resulting from increases in Ca2+influx, Ca2+ sensitivity, sarcoplasmic reticular (SR)Ca2+ release and uptake, SR Ca2+ content, andprobably reduction in sarcolemmal Na+/Ca2+ exchange.

  相似文献   

11.
Agonist stimulation of human pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) with histamine showed similar spatiotemporal patterns of Ca2+ release. Both sustained elevation and oscillatory patterns of changes in cytosolic Ca2+ concentration ([Ca2+]cyt) were observed in the absence of extracellular Ca2+. Capacitative Ca2+ entry (CCE) was induced in PASMC and PAEC by passive depletion of intracellular Ca2+ stores with 10 µM cyclopiazonic acid (CPA; 15–30 min). The pyrazole derivative BTP2 inhibited CPA-activated Ca2+ influx, suggesting that depletion of CPA-sensitive internal stores is sufficient to induce CCE in both PASMC and PAEC. The recourse of histamine-mediated Ca2+ release was examined after exposure of cells to CPA, thapsigargin, caffeine, ryanodine, FCCP, or bafilomycin. In PASMC bathed in Ca2+-free solution, treatment with CPA almost abolished histamine-induced rises in [Ca2+]cyt. In PAEC bathed in Ca2+-free solution, however, treatment with CPA eliminated histamine-induced sustained and oscillatory rises in [Ca2+]cyt but did not affect initial transient increase in [Ca2+]cyt. Furthermore, treatment of PAEC with a combination of CPA (or thapsigargin) and caffeine (and ryanodine), FCCP, or bafilomycin did not abolish histamine-induced transient [Ca2+]cyt increases. These observations indicate that 1) depletion of CPA-sensitive stores is sufficient to cause CCE in both PASMC and PAEC; 2) induction of CCE in PAEC does not require depletion of all internal Ca2+ stores; 3) the histamine-releasable internal stores in PASMC are mainly CPA-sensitive stores; 4) PAEC, in addition to a CPA-sensitive functional pool, contain other stores insensitive to CPA, thapsigargin, caffeine, ryanodine, FCCP, and bafilomycin; and 5) although the CPA-insensitive stores in PAEC may not contribute to CCE, they contribute to histamine-mediated Ca2+ release. intracellular calcium stores; oscillations; pulmonary hypertension  相似文献   

12.
Depletion of Ca2+ stores inthe sarcoplasmic reticulum (SR) activates extracellularCa2+ influx via capacitativeCa2+ entry (CCE). Here, CCE levelsin proliferating and growth-arrested human pulmonary artery smoothmuscle cells (PASMCs) were compared by digital imaging fluorescencemicroscopy. Resting cytosolic freeCa2+ concentration([Ca2+]cyt)in proliferating PASMCs was twofold higher than that in growth-arrestedcells. Cyclopiazonic acid (CPA; 10 µM), which inhibits SRCa2+-ATPase and depletes inositol1,4,5-trisphosphate-sensitiveCa2+ stores, transiently increased[Ca2+]cytin the absence of extracellularCa2+. The addition of 1.8 mMCa2+ to the extracellular solutionin the presence of CPA induced large increases in[Ca2+]cyt,indicative of CCE. The CPA-induced SRCa2+ release in proliferatingPASMCs was twofold higher than that in growth-arrested cells, whereasthe transient rise of[Ca2+]cytdue to CCE was fivefold greater in proliferating cells. CCE wasinsensitive to nifedipine but was significantly inhibited by 50 mMK+, which reduces the drivingforce for Ca2+ influx, and by 0.5 mM Ni2+, a putative blocker ofstore-operated Ca2+ channels.These data show that augmented CCE is associated with proliferation ofhuman PASMCs and may be involved in stimulating and maintaining cell growth.

  相似文献   

13.
Our previous study has demonstrated that ovariectomy (Ovx) significantly increased the left ventricular developed pressure (LVDP) and the maximal rate of developed pressure over time (±dP/dtmax) in the isolated perfused rat heart and the effects were reversed by female sex hormone replacement. In the present investigation, we studied the effects of Ovx for 6 wk on Ca2+ homeostasis that determines the contractile function. Particular emphasis was given to Ca2+ handling by ryanodine receptor (RyR) and Na+-Ca2+ exchange (NCX). 45Ca2+ fluxes via the RyR, NCX, and Ca2+-ATPase (SERCA) were compared with their expression in myocytes from Ovx rats with and without estrogen replacement. Furthermore, we correlated the handling of Ca2+ by these Ca2+ handling proteins with the overall Ca2+ homeostasis by determining the Ca2+ transients induced by electrical stimulation and caffeine, which reveals the dynamic changes of cytosolic Ca2+ concentration ([Ca2+]i) in the heart. In addition, we determined the expression and contribution of protein kinase A (PKA) to the regulation of the aforementioned Ca2+ handling proteins in Ovx rats. It was found that after Ovx there were 1) increased Ca2+ fluxes via RyR and NCX, which were reversed not only by estrogen replacement, but more importantly by blockade of PKA; 2) an increased expression of PKA; and 3) no increase in expression of NCX and SERCA. We suggest that hyperactivities of RyR and NCX are a result of upregulation of PKA. The increased release of Ca2+ through RyR and removal of Ca2+ by NCX are believed to be responsible for the greater contractility and faster relaxation after Ovx. ovariectomy  相似文献   

14.
The role of mitochondria inCa2+ homeostasis is controversial.We employed the Ca2+-sensitive dyerhod 2 with novel, high temporal and spatial resolution imaging toevaluate changes in the matrix freeCa2+ concentration of individualmitochondria([Ca2+]m)in agonist-stimulated, primary cultured aortic myocytes. Stimulation with 10 µM serotonin (5-HT) evoked modest cytosolicCa2+ transients[cytosolic freeCa2+ concentration([Ca2+]cyt)<500 nM; measured with fura 2] and triggered contractions inshort-term cultured myocytes. However, 5-HT triggered a large mitochondrial rhod 2 signal (indicating pronounced elevation of [Ca2+]m)in only 4% of cells. This revealed heterogeneity in the responses ofindividual mitochondria, all of which stained with MitoTracker GreenFM. In contrast, stimulation with 100 µM ATP evoked large cytosolicCa2+ transients (>1,000 nM) andinduced pronounced, reversible elevation of[Ca2+]m(measured as rhod 2 fluorescence) in 60% of cells. This mitochondrial Ca2+ uptake usually lagged behindthe cytosolic Ca2+ transient peakby 3-5 s, and[Ca2+]mdeclined more slowly than did bulk[Ca2+]cyt.The uptake delay may prevent mitochondria from interfering with rapidsignaling events while enhancing the mitochondrial response to large,long-duration elevations of[Ca2+]cyt.The responses of arterial myocytes to modest physiological stimulationdo not, however, depend on such marked changes in [Ca2+]m.  相似文献   

15.
This study examines theCa2+ influx-dependent regulationof the Ca2+-activatedK+ channel(KCa) in human submandibulargland (HSG) cells. Carbachol (CCh) induced sustained increases in theKCa current and cytosolic Ca2+ concentration([Ca2+]i),which were prevented by loading cells with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Removal of extracellularCa2+ and addition ofLa3+ orGd3+, but notZn2+, inhibited the increases inKCa current and[Ca2+]i.Ca2+ influx during refill (i.e.,addition of Ca2+ to cells treatedwith CCh and then atropine inCa2+-free medium) failed to evokeincreases in the KCa current but achieved internal Ca2+ storerefill. When refill was prevented by thapsigargin,Ca2+ readdition induced rapidactivation of KCa. These dataprovide further evidence that intracellularCa2+ accumulation provides tightbuffering of[Ca2+]iat the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggestthat the Ca2+ influx-dependentregulation of the sustained KCacurrent in CCh-stimulated HSG cells is mediated by the uptake ofCa2+ into the internalCa2+ store and release via theinositol 1,4,5-trisphosphate-sensitive channel.

  相似文献   

16.
We examined the effectsof metabolic inhibition on intracellular Ca2+ release insingle pulmonary arterial smooth muscle cells (PASMCs). Severemetabolic inhibition with cyanide (CN, 10 mM) increased intracellularcalcium concentration ([Ca2+]i) and activatedCa2+-activated Cl currents[ICl(Ca)] in PASMCs, responses that were greatlyinhibited by BAPTA-AM or caffeine. Mild metabolic inhibition with CN (1 mM) increased spontaneous transient inward currents andCa2+ sparks in PASMCs. In Xenopus oocytes, CNalso induced Ca2+ release and activatedICl(Ca), and these responses were inhibited by thapsigarginand cyclopiazonic acid to deplete sarcoplasmic reticulum (SR)Ca2+, whereas neither heparin nor anti-inositol1,4,5-trisphosphate receptor (IP3R) antibodies affected CNresponses. In both PASMCs and oocytes, CN-evoked Ca2+release was inhibited by carbonyl cyanidem-chlorophenylhydrazone (CCCP) and oligomycin or CCCP andthapsigargin. Whereas hypoxic stimuli resulted in Ca2+release in pulmonary but not mesenteric artery myocytes, CN induced release in both cell types. We conclude that metabolic inhibition withCN increases [Ca2+]i in both pulmonary andsystemic artery myocytes by stimulating Ca2+ release fromthe SR and mitochondria.

  相似文献   

17.
We have previously demonstrated that intermittent high-altitude (IHA) hypoxia significantly attenuates ischemia-reperfusion (I/R) injury-induced excessive increase in resting intracellular Ca2+ concentrations ([Ca2+]i). Because the sarcoplasmic reticulum (SR) and Na+/Ca2+ exchanger (NCX) play crucial roles in regulating [Ca2+]i and both are dysfunctional during I/R, we tested the hypothesis that IHA hypoxia may prevent I/R-induced Ca2+ overload by maintaining Ca2+ homeostasis via SR and NCX mechanisms. We thus determined the dynamics of Ca2+ transients and cell shortening during preischemia and I/R injury in ventricular cardiomyocytes from normoxic and IHA hypoxic rats. IHA hypoxia did not affect the preischemic dynamics of Ca2+ transients and cell shortening, but it significantly suppressed the I/R-induced increase in resting [Ca2+]i levels and attenuated the depression of the Ca2+ transients and cell shortening during reperfusion. Moreover, IHA hypoxia significantly attenuated I/R-induced depression of the protein contents of SR Ca2+ release channels and/or ryanodine receptors (RyRs) and SR Ca2+ pump ATPase (SERCA2) and SR Ca2+ release and uptake. In addition, a delayed decay rate time constant of Ca2+ transients and cell shortening of Ca2+ transients observed during ischemia was accompanied by markedly inhibited NCX currents, which were prevented by IHA hypoxia. These findings indicate that IHA hypoxia may preserve Ca2+ homeostasis and contraction by preserving RyRs and SERCA2 proteins as well as NCX activity during I/R. intracellular Ca2+ concentration; Ca2+ transients; Ca2+ transporters; myofilament Ca2+ sensitivity  相似文献   

18.
The effects ofendurance run training onNa+-dependentCa2+ regulation in rat leftventricular myocytes were examined. Myocytes were isolated fromsedentary and trained rats and loaded with fura 2. Contractile dynamicsand fluorescence ratio transients were recorded during electricalpacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29°C.Resting and peak cytosolic Ca2+concentration([Ca2+]c)did not change with exercise training. However, resting and peak[Ca2+]cincreased significantly in both groups during 5 min of continuous pacing, although diastolic[Ca2+]cin the trained group was less susceptible to this elevation ofintracellular Ca2+. Run trainingalso significantly reduced the rate of[Ca2+]cdecay during relaxation. Myocytes were then exposed to 10 mM caffeinein the absence of external Na+ orCa2+ to trigger sarcoplasmicreticular Ca2+ release and tosuppress cellular Ca2+ efflux.This maneuver elicited an elevated steady-state[Ca2+]c.External Na+ was then added, andthe rate of[Ca2+]cclearance was determined. Run training significantly reduced the rateof Na+-dependent clearance of[Ca2+]cduring the caffeine-induced contractures. These data demonstrate thatthe removal of cytosolic Ca2+ wasdepressed with exercise training under these experimental conditionsand may be specifically reflective of a training-induced decrease inthe rate of cytosolic Ca2+ removalviaNa+/Ca2+exchange and/or in the amount ofCa2+ moved across the sarcolemmaduring a contraction.  相似文献   

19.
Regulation of intracellular calcium in human esophageal smooth muscles   总被引:7,自引:0,他引:7  
We have investigated sources ofCa2+ contributing to excitation ofhuman esophageal smooth muscle, using fura 2 to study cytosolic freeCa2+ concentration([Ca2+]i)in dispersed cells and contraction of intact muscles. Acetylcholine (ACh) caused an initial peak rise of[Ca2+]ifollowed by a plateau accompanied by reversible contraction. Removal ofextracellular Ca2+ or addition ofdihydropyridine Ca2+ channelblockers reduced the plateau phase but did not prevent contraction.Caffeine also caused elevation of[Ca2+]iand blocked responses to ACh. Undershoots of[Ca2+]iwere apparent after ACh or caffeine. Blockade of the sarcoplasmic reticular Ca2+-ATPase bycyclopiazonic acid (CPA) reduced the ACh-evoked increase of[Ca2+]iand abolished the undershoot, indicating involvement ofCa2+ stores. When contraction wasstudied in intact muscles, removal ofCa2+ or addition of nifedipinereduced, but did not abolish, carbachol (CCh)-induced contraction.Elevation of extracellular K+caused contraction that was inhibited by nifedipine, although CCh stillelicited contraction. CPA caused contraction and suppressed theCCh-induced contraction, whereas ryanodine reduced CCh-induced contraction. Our studies provide evidence that muscarinic excitation ofhuman esophagus involves both release ofCa2+ from intracellular stores andinflux of Ca2+.

  相似文献   

20.
Store-operated Ca2+ entry (SOCE), which is Ca2+ entry triggered by the depletion of intracellular Ca2+ stores, has been observed in many cell types, but only recently has it been suggested to occur in cardiomyocytes. In the present study, we have demonstrated SOCE-dependent sarcoplasmic reticulum (SR) Ca2+ loading (loadSR) that was not altered by inhibition of L-type Ca2+ channels, reverse mode Na+/Ca2+ exchange (NCX), or nonselective cation channels. In contrast, lowering the extracellular [Ca2+] to 0 mM or adding either 0.5 mM Zn2+ or the putative store-operated channel (SOC) inhibitor SKF-96365 (100 µM) inhibited loadSR at rest. Interestingly, inhibition of forward mode NCX with 30 µM KB-R7943 stimulated SOCE significantly and resulted in enhanced loadSR. In addition, manipulation of the extracellular and intracellular Na+ concentrations further demonstrated the modulatory role of NCX in SOCE-mediated SR Ca2+ loading. Although there is little knowledge of SOCE in cardiomyocytes, the present results suggest that this mechanism, together with NCX, may play an important role in SR Ca2+ homeostasis. The data reported herein also imply the presence of microdomains unique to the neonatal cardiomyocyte. These findings may be of particular importance during open heart surgery in neonates, in which uncontrolled SOCE could lead to SR Ca2+ overload and arrhythmogenesis. cardiac ontogeny; cardiac excitation-contraction coupling; calcium homeostasis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号