首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of parasite resistance can be influenced by the abundance of parasites in the environment. However, it is yet unresolved whether vertebrates change their investment in immune function in response to variation in parasite abundance. Here, we compare parasite abundance in four populations of small ground finches (Geospiza fuliginosa) in the Galapagos archipelago. We predicted that populations exposed to high parasite loads should invest more in immune defence, or alternatively use a different immunological defence strategy. We found that parasite prevalence and/or infection intensity increased with island size. As predicted, birds on large islands had increased concentrations of natural antibodies and mounted a strong specific antibody response faster than birds on smaller islands. By contrast, the magnitude of cell-mediated immune responses decreased with increasing parasite pressure, i.e. on larger islands. The data support the hypothesis that investments into the immune defence are influenced by parasite-mediated selection. Our results are consistent with the hypothesis that different immunological defence strategies are optimal in parasite-rich and parasite-poor environments.  相似文献   

2.
Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free‐living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host–parasite–predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level.  相似文献   

3.
Immunity and reproductive effort are both physiologically costly and often a trade-off between these functions has been shown. In studies with damselflies, parasite load has been associated with fitness costs, such as reductions in mating success, male condition, and survival. Although each individual may be simultaneously infected by various parasite species, most studies have concentrated on the effects of a single parasite taxon. We examined natural ecto- and endoparasite infection levels in male Coenagrion armatum (Charpentier) (Odonata: Coenagrionidae) damselflies in relation to their mating status, fat reserves, and ability to further mount an immune response, measured as encapsulation of an experimentally introduced foreign object. Encapsulation response was lower for mated (paired) males than for single males and declined with increasing water mite abundance. Mated males had fewer water mites than single males. Male weight or fat reserves did not explain variation in encapsulation response. The number of gregarine gut parasites was not related to the level of encapsulation response and did not differ between mated and single males. However, there was a negative correlation between mite abundance and gregarine load. Our data suggest that current mite infection may compromise a male's resistance against further infections by pathogens and parasites, and there may be a trade-off between reproductive effort and encapsulation response in male C. armatum .  相似文献   

4.
We examined variation in glucocorticoid levels in the mandrill, a brightly coloured primate species, to identify major social influences on stress hormones, and investigate relationships among glucocorticoid levels, testosterone and secondary sexual ornamentation. We collected a total of 317 fecal samples for 16 adult male mandrills over 13 months, including mating and non-mating periods and periods of both dominance rank stability and instability, and compared fecal glucocorticoid levels with dominance rank, rank stability, presence of receptive females, gastro-intestinal parasite infection, fecal testosterone and facial red coloration. Glucocorticoid levels did not vary systematically with dominance rank, but increased when the dominance hierarchy was unstable, and increased in the presence of receptive females. The relationship between dominance rank and glucocorticoid levels changed direction according to the stability of the dominance hierarchy: glucocorticoid levels were higher in subordinate males under stable conditions, but under conditions of instability higher ranking males had higher glucocorticoid levels. The influence of dominance rank also interacted with the presence of receptive females: glucocorticoids were higher in dominant males than in subordinates, but only during mating periods, suggesting that dominant males are more stressed than subordinates during such periods. These findings support previous studies showing that the relationship between glucocorticoids and dominance rank in male baboons is dependent on the social environment. We also found that males with higher glucocorticoids suffered a higher diversity of gastrointestinal parasite infection, in line with evidence that glucocorticoids suppress the immune system in other species. However, we found no support for the stress-mediated immunocompetence handicap hypothesis for the evolution of condition-dependent ornaments: glucocorticoid and testosterone levels were positively related, rather than the negative relationship predicted by the hypothesis, and we found no relationship between red colour and glucocorticoid levels, suggesting that glucocorticoids do not play a role in translating social conditions or physical health into ornament expression in this species.  相似文献   

5.
Host susceptibility and patterns of infection are predicted to differ between males and females due to sex-based tradeoffs between the demands of reproduction and costly immune defenses. In this study, we examined immune defenses and the response to experimental infection by a protozoan parasite, Ophryocystis elektroscirrha, in male and female monarch butterflies, Danaus plexippus. We quantified two measures of immunity in late instar larvae: the concentration of circulating hemocytes and mid-gut phenoloxidase activity, and also quantified final parasite loads, body size, longevity, and wing melanism of adult butterflies. Results showed that females had greater average hemocyte counts than males in the absence of infection; males, but not females, showed an increased concentration of hemocytes in the presence of infection. However, higher hemocyte concentrations in larvae were not significantly correlated with lower adult parasite loads, and mid-gut phenoloxidase activity was not significantly associated with hemocyte counts or parasite treatments. Among unparasitized females, greater hemocyte concentrations were costly in terms of reduced body size, but for parasite-treated females, hemocyte concentrations and body size were positively associated. Across all monarchs, unparasitized butterflies showed greater wing melanism (darker forewings) than parasitized monarchs. Overall, this study provides support for differential costs of immune defenses in male and female monarch butterflies, and a negative association between parasite infection and monarch wing melanism.  相似文献   

6.
Sexual ornaments might indicate better condition, fewer parasites or a greater immune responsiveness. Carotenoid-based ornaments are common sexual signals of birds and often influence mate choice. Skin or beaks pigmented by carotenoids can change colour rapidly, and could be particularly useful as honest indicators of an individual's current condition and/or health. This is because carotenoids must be acquired through diet and/or allocation for ornamental coloration might be to the detriment of self-maintenance needs. Here, we investigated whether the carotenoid-based coloration of eye rings and beak of male red-legged partridges Alectoris rufa predicted condition (mass corrected for size), parasite load (more specifically infection by coccidia, a main avian intestinal parasite) or a greater immune responsiveness (swelling response to a plant lectin, phytohaemagluttinin, or PHA). Redness of beak and eye rings positively correlated with plasma carotenoid levels. Also, males in better condition had fewer coccidia, more circulating carotenoids and a greater swelling response to PHA. Carotenoid-based ornamentation predicted coccidia abundance and immune responsiveness (redder males had fewer coccidia and greater swelling response to PHA), but was only weakly positively related to condition. Thus, the carotenoid pigmentation of beak and eye rings reflected the current health status of individuals. Our results are consistent with the hypothesis that allocation trade-offs (carotenoid use for ornamentation versus parasite defence needs) might ensure reliable carotenoid-based signalling.  相似文献   

7.
Parasite-mediated sexual selection theory presumes that variation in sexual traits reliably reflects variation in parasite resistance among available mates. One mechanism that may warrant signal honesty involves costs of immune system activation in the case of a parasitic infection. We investigated this hypothesis in male field crickets Gryllus campestris, whose attractiveness to females depends on characteristics of the sound-producing harp that are essentially fixed following adult eclosion. During the nymphal stage, males subjected to one of two feeding regimes were challenged with bacterial lipopolysaccharides (LPS) to investigate condition-dependent effects on harp development as compared to other adult traits. Nymphal nutritional status positively affected adult body size, condition, and harp size. However, nymphal immune status affected harp size only, with LPS-males having smaller harps than control-injected males. In addition, the harps of LPS-males showed a lesser degree of melanization, indicating an enhanced substrate use by the melanin-producing enzyme cascade of the immune system. Thus, past immune status is specifically mirrored in sexual traits, suggesting a key role for deployment costs of immunity in parasite-mediated sexual selection.  相似文献   

8.
The colourful surface of birds’ eggshells varies dramatically between species, but the selective pressures driving this variation remain poorly understood. We used a large comparative dataset to test several hypotheses proposed to explain the evolution of eggshell colouration. We tested the hypothesis that predation pressure might select for cryptic eggshells by examining the relationship between predation rate and egg colouration. We found that predation rates were positively related to eggshell brightness. The blackmail hypothesis suggests that females lay colourful eggshells to coerce males into providing additional care during incubation to keep colourful eggs covered. According to this hypothesis, conspicuous eggs should be found in situations with high risk of visual detection from predators or brood parasites. In support of this hypothesis, proportional blue-green chroma was positively related to parasitism risk, and eggs with higher proportional blue-green chroma or higher ultraviolet chroma received higher combined parental nest attendance during the incubation period. The sexual signalling hypothesis states that blue-green colour indicates female quality; however, we did not find that blue-green eggshell colour was greater in species where males participate in any form of parental care, and relative male provisioning was unrelated to blue-green eggshell chroma. We found some support for the hypothesis that brood parasitism may select for high inter-clutch variation in eggshell colour to facilitate egg recognition. In our dataset, parasitism risk was negatively related to inter-clutch repeatability of blue-green chroma. Our study highlights the diversity of selection pressures acting on the evolution of eggshell colour in birds and provides suggestions for novel areas of future key research direction.  相似文献   

9.
Hamilton and Zuk proposed that females choose mates based on ornaments whose expression is dependent on their genetically based resistance to parasites. The major histocompatibility complex (MHC) plays an important role in pathogen recognition and is a good candidate for testing the relationships between immune genes and both ornament expression and parasite resistance. We tested the hypothesis that female common yellowthroats prefer to mate with more ornamented males, because it is a signal of their MHC‐based resistance to parasites and likelihood of survival. In this species, females prefer males that have larger black facial masks as extrapair mates. Using pyrosequencing, we found that mask size was positively related to the number of different MHC class II alleles, as predicted if greater variation at the MHC allows for the recognition of a greater variety of pathogens. Furthermore, males with more MHC class II alleles had greater apparent survival, and resistance to malaria infection was associated with the presence of a particular MHC class II allele. Thus, extrapair mating may provide female warblers with immunity genes that are related to parasite resistance, survival, and the expression of a male ornament, consistent with good genes models of sexual selection.  相似文献   

10.
Pesticide pollution can alter parasite transmission, but scientists are unaware if effects of pesticides on parasite exposure and host susceptibility (i.e. infection risk given exposure) can be generalised within a community context. Using replicated temperate pond communities, we evaluate effects of 12 pesticides, nested in four pesticide classes (chloroacetanilides, triazines, carbamates organophosphates) and two pesticide types (herbicides, insecticides) applied at standardised environmental concentrations on larval amphibian exposure and susceptibility to trematode parasites. Most of the variation in exposure and susceptibility occurred at the level of pesticide class and type, not individual compounds. The organophosphate class of insecticides increased snail abundance (first intermediate host) and thus trematode exposure by increasing mortality of snail predators (top–down mechanism). While a similar pattern in snail abundance and trematode exposure was observed with triazine herbicides, this effect was driven by increases in snail resources (periphytic algae, bottom–up mechanism). Additionally, herbicides indirectly increased host susceptibility and trematode infections by (1) increasing time spent in susceptible early developmental stages and (2) suppressing tadpole immunity. Understanding generalisable effects associated with contaminant class and type on transmission is critical in reducing complexities in predicting disease dynamics in at‐risk host populations.  相似文献   

11.
The immunocompetence hypothesis predicts that testosterone (T)enhances the expression of male secondary sexual characterswhile exerting a suppressive effect on the immune system therebyexposing hosts to higher intensities of parasite infestations.In a natural population of barn swallow (Hirundo rustica) males,the intensity of infestation by some ectoparasites was negativelycorrelated with tail length and was positively correlated withimmunoglobulin levels, but no clear relationship was observedbetween immune responses (leukocyte counts, immunoglobulins)and tail length. Males implanted with T had higher intensitiesof parasite infestations at the time of recapture than controlmales, and T-implanted males experienced an increase in countsof eosinophils. In T-implanted males, immunoglobulin levelsinitially decreased and then increased as time from implantationelapsed. Among T-implanted males, those with longer tails hada smaller increase in eosinophil counts, tended to experiencea smaller increase of parasite infestations, and were more likelyto survive until the following breeding season than those withshorter tails. The relationships between parasite burden, immunesystem, and exaggeration of tail length in the natural populationof males are consistent with some aspects of the immunocompetencehandicap hypothesis. The results from the manipulation of Tplasma levels are also partly consistent with the hypothesis,since T-implantation resulted in higher levels of parasite infestations,but contradict the assumption of an obligatory immunosuppressiveeffect of T. Higher activation of the immune system of T-implantedmales indicate that high T plasma levels imposed a two-foldcost because of the effects on parasites and the immune responseto parasites, and this suggests that the effect of T on parasitesmight not be mediated by the immune system of the host. Theresults of the manipulation of T plasma levels support the handicapversion of the immunocompetence hypothesis since high quality,long-tailed males paid less in terms of activation of the immunesystem, change in parasite infestations, and chances of survivalthan low-quality, short-tailed males.  相似文献   

12.
Many avian species are negatively impacted by urbanization, but other species survive and prosper in urbanized areas. One factor potentially contributing to the success of some species in urban areas is the reduced presence of predators or parasite vectors in urban compared to rural areas. In addition, urban areas may provide increased food and water resources, which can enhance immune capacity to resist infection and the ability to eliminate parasites. We determined patterns of blood parasitism, body condition, and immune cell profiles in urban and rural populations of five adult male songbird species that vary in their relative abundance within urban areas. Urban birds generally exhibited less blood parasitism than rural birds. This difference was particularly evident for the urban-adaptable Abert's towhee Pipilo aberti . In contrast, no difference in haemoparasitism was seen between urban and rural populations of the curve-billed thrasher Toxostoma curvirostre , a less-urban adaptable species. In two closely related species, the curve-billed thrasher and the northern mockingbird Mimus polyglottos , urban birds had a higher leukocyte count and a higher heterophil to lymphocyte ratio, which is often associated with chronic stress or current infection, than rural birds. Urban northern mockingbirds were in better condition than rural counterparts, but no habitat-related differences in condition were detected for other species. Parasitic infection was correlated with body condition in only one species, the canyon towhee Pipilo fuscus . Parasitic infection in most species was correlated with changes in leukocyte abundance and profile. The findings suggest that interspecific differences in parasitic infection cannot be attributed entirely to differences in vector abundance or body condition. Interactions between immune function, parasite infection risk, and resource availability may contribute to determining the relative ability of certain species to adapt to cities.  相似文献   

13.
生态免疫学研究进展   总被引:2,自引:0,他引:2  
徐德立  王德华 《生态学报》2012,32(19):6251-6258
随着整合生物学思想的发展,生态学与免疫学的相互渗透与交叉,产生了生态免疫学这一崭新的学科,自从其诞生虽然只有短短的十几年时间,但发展迅速。生态免疫学主要从免疫代价的视角来解释生活史权衡、性选择和种群动态变化等生态学问题。动物的免疫功能对其抵抗疾病和最终的生存起至关重要的作用,影响动物免疫的因素具有多样性和复杂性的特点,而研究动物免疫功能变化的原因和结果一直是生态免疫学研究的重要内容。免疫防御是否具有能量或资源代价,这种代价是否昂贵是生态免疫学需要回答的基本问题之一,大量的实验已表明免疫防御的代价是昂贵的。由于能量或资源不是无限的,有限的能量或资源必须在多种经常相互竞争的生理功能间进行分配,这导致了免疫功能与动物的生长、繁殖等生活史组分之间的权衡,很多的研究表明增加一个过程的投资会降低对另一过程的投资。免疫同样在性选择特征进化以及维持雌性偏爱性修饰的雄性中发挥至关重要的作用,免疫功能障碍假说认为睾丸激素负责第二性征的产生并同时具有免疫抑制作用,表达性征的代价是降低了免疫功能,这使得宿主对病原体或寄生物攻击的易感性增加,因此只有高质量的雄性个体才能充分表达性征同时又不遭受大量寄生负荷。综述了生态免疫学的概念、研究内容以及未来研究需要关注的领域。  相似文献   

14.
Theory predicts that predators can reduce parasite abundance on prey by reducing prey density and through disproportionate predation on heavily infested individuals. We experimentally tested this prediction by examining the effects of bird predation on parasitic mite infestation of the prey lizard Acanthodactylus beershebensis. We manipulated predation by adding perches to arid scrubland, allowing avian predators to hunt for lizards in a habitat the birds would not normally use. Host density influenced parasite abundance in hatchlings, but not in older aged individuals and parasite abundance did not affect lizard host survival. Contrary to expectation mite abundance on adult lizards increased under low predation intensities. We explain these results by suggesting a novel hypothesis based on the assumption that the two components of predation, i.e. actual removal of prey and risk, exert contradictory effects on macroparasite abundance.  相似文献   

15.
Møller AP  Rózsa L 《Oecologia》2005,142(2):169-176
Antagonistic host-parasite interactions lead to coevolution of host defenses and parasite virulence. Such adaptation by parasites to host defenses may occur to the detriment of the ability of parasites to exploit alternative hosts, causing parasite specialization and speciation. We investigated the relationship between level of anti-parasite defense in hosts and taxonomic richness of two chewing louse suborders (Phthiraptera: Amblycera, Ischnocera) on birds. While Amblyceran lice tend to occur in contact with host skin, feed on host skin and chew emerging tips of developing feathers to obtain blood, Ischnoceran lice live on feathers and feed on the non-living keratin of feather barbules. We hypothesized that Amblyceran abundance and richness would have evolved in response to interaction with the immune system of the host, while Ischnoceran taxonomic richness would have evolved independently of immunological constraints. In an interspecific comparison, the abundance of Ischnocerans was positively related to host body size, while host body mass and Ischnoceran taxonomic richness accounted for the abundance of Amblycerans. Amblyceran taxonomic richness was predicted by the intensity of T-cell mediated immune response of nestling hosts, while the T-cell response of adults had no significant effect. In contrast, Ischnoceran taxonomic richness was not predicted by host T-cell responses. These results suggest that the taxonomic richness of different parasite taxa is influenced by different host defenses, and they are consistent with the hypothesis that increasing host allocation to immune defense increases Amblyceran biodiversity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
Apparent competition between prey is hypothesized to occur more frequently in environments with low densities of preferred prey, where predators are forced to forage for multiple prey items. In the arctic tundra, numerical and functional responses of predators to preferred prey (lemmings) affect the predation pressure on alternative prey (goose eggs) and predators aggregate in areas of high alternative prey density. Therefore, we hypothesized that predation risk on incidental prey (shorebird eggs) would increase in patches of high goose nest density when lemmings were scarce. To test this hypothesis, we measured predation risk on artificial shorebird nests in quadrats varying in goose nest density on Bylot Island (Nunavut, Canada) across three summers with variable lemming abundance. Predation risk on artificial shorebird nests was positively related to goose nest density, and this relationship was strongest at low lemming abundance when predation risk increased by 600% as goose nest density increased from 0 to 12 nests ha?1. Camera monitoring showed that activity of arctic foxes, the most important predator, increased with goose nest density. Our data support our incidental prey hypothesis; when preferred prey decrease in abundance, predator mediated apparent competition via aggregative response occurs between the alternative and incidental prey items.  相似文献   

17.
In primates, baseline levels of white blood cell (WBC) counts are related to mating promiscuity. It was hypothesized that differences in the primate immune system reflect pathogen risks from sexually transmitted diseases (STDs). Here, we test for the generality of this result by examining hypotheses involving behavioural, ecological and life-history factors in carnivores. Again, we find a significant correlation in carnivores between mating promiscuity and elevated levels of WBC counts. In addition, we find relationships with measures of sociality, substrate use and life-history parameters. These comparative results across independent taxonomic orders indicate that the evolution of the immune system, as represented by phylogenetic differences in basal levels of blood cell counts, is closely linked to disease risk involved with promiscuous mating and associated variables. We found only limited support for an association between the percentage of meat in the diet and WBC counts, which is consistent with the behavioural and physiological mechanisms that carnivores use to avoid parasite transmission from their prey. We discuss additional comparative questions related to taxonomic differences in disease risk, modes of parasite transmission and implications for conservation biology.  相似文献   

18.
In this study we assessed whether local habitat features and host population density influenced disease risk in Eagle Owl Bubo bubo fledglings. Measures of immune defence (concentrations of circulating white blood cells), prevalence of three parasite types (a blood parasite Leucocytozoon ziemanni , an insect Carnus haemapterus , and a tick Rhipicephalus sp.) and total number of parasite species were used to quantify disease risk. We tested the hypotheses that disease risk in fledglings was higher in nests located in areas with higher length of and proximity to watercourses (as a higher abundance and viability of parasites and vectors occur in wetter areas), higher cover of forest (as forest moistness and humidity can favour higher vector and parasite proliferation), higher habitat diversity (as environmental heterogeneity increases the pool of potential vectors and parasites) and higher local owl population density (as disease transmission might be density-dependent). The clearest relationship was with the proximity of freshwater, although the other hypotheses were also partially supported. Concentrations of white blood cells, the number of parasite species and, weakly, the prevalence of Carnus haemapterus were all higher in nests closer to watercourses. The prevalence of blood parasites increased with the cover of forested areas. Fledglings from nests located in more diverse habitats had higher white blood cell concentrations and showed higher prevalence of blood parasites. Finally, local host population density was positively correlated with the prevalence of blood parasites. The results suggest the existence of complex and interrelated links between ecological parameters and three different measures of disease risk, and highlight the importance of immunological approaches to assess disease risk at an intraspecific level.  相似文献   

19.
Sexual ornaments may enable females to discriminate amongst potential mates and choose those having either fewer parasites, or those which are more immunocompetent, or better able to cope with parasites. Tetraonid birds exhibit supra-orbital combs that function in both intra-sexual competition and mate choice. Through a correlative and experimental approach we investigated whether comb size of male red grouse Lagopus lagopus scoticus was related to infection intensity by their main parasite, the gastro intestinal nematode Trichostrongylus tenuis , and to immune function. We first looked at the relationships between immune function, parasite infection and condition. We found that spleen mass, an indirect measure of immune response, correlated positively with T. tenuis load, and negatively with condition. Cell-mediated immunity, a measure of immune defence, correlated positively with condition, and although not significantly related to T. tenuis load, increased when nematode parasites were experimentally reduced. Secondly, we investigated whether comb size was related to condition, T. tenuis load or immune function. Comb size was not significantly related to T. tenuis infection and did not change significantly after nematode parasite removal. However, males with bigger combs were in better condition, had a lighter spleen, a lighter spleen than expected from their T. tenuis load and had greater cell-mediated immunity. The findings suggest that comb size relates to immune function rather than T. tenuis parasite infection intensity. Males with bigger combs are likely to be of higher phenotypic quality because they are more immunocompetent and might be better able to cope with the detrimental effects of parasites.  相似文献   

20.
Cornet S  Biard C  Moret Y 《Oecologia》2009,159(2):257-269
Despite intensive studies in ecological immunology, few have investigated variation in immune defence among natural populations; in particular, there is a lack of knowledge of the sources of spatial variability in immune defence in the wild. Here we documented variation among twelve populations of the freshwater crustacean Gammarus pulex in the activity of the prophenoloxidase (ProPO) system, which is an important component of invertebrate immunity. We then tested for trade-offs between investment in immune defence and fitness-related traits such as survival and fecundity, as well as for environmental causes of variability (water temperature and conductivity, parasite prevalence). Levels of immune defence differed among populations, with environment partly explaining this population effect, as immune activities were negatively related to water conductivity and acanthocephalan parasite prevalence. There was a strong variation among populations for the maintenance of the ProPO system, while variation in its use was relatively weak. Such a pattern could be partly explained by the relative costs associated with the maintenance and/or the use of the ProPO system. Investment in the ProPO system was negatively correlated to survival, whereas it was positively related to female fecundity and resource storage. However, variation in immunity did not predict resistance to bacterial infection among populations, suggesting that measuring the activity of the ProPO system might not be sufficient to estimate immunocompetence at the population level. These results suggest that investment in immune function is a variable trait, which might be locally optimized as a result of both life history trade-offs and environmental conditions, highlighting the need to combine them in a common framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号