首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elena Marčenko 《Protoplasma》1973,76(3-4):417-433
Summary A yellow strain, called y-1, was isolated during heat-induced bleaching ofEuglena gracilis strain Z.The ultrastructure, growth, and carotenoid content of this strain were studied and compared with those of the wild-typeEuglena and the heat-bleached colourless strain.The yellow, xanthophyll-containing strain y-1 resembles in many respects the etiolated wild-typeEuglena which has lost the ability to form chloroplasts in the light. It represents a transitional stage in the process of progressive degradation of plastids induced by bleaching treatments between the wild-typeEuglena and the colourless strain.Both bleached strains differ mainly in their carotenoid content formed in the light and especially in the dark, and the size and distribution of undeveloped plastids. In the yellow bodies of both strains PLB structure appears in accordance with their plastid nature.Thus, as shown in the present paper, the structural changes, appearing in the plastids of bleachedEuglena, seem to be at least morphologically very similar to the structural changes occuring in transforming plastids of higher plants.  相似文献   

2.
Summary The periplast ofHemiselmis brunnescens Butcher is a complex cell covering comprised of the plasma membrane (PM) sandwiched between a surface periplast component (SPC) and an inner periplast component (IPC). The SPC is revealed by deep-etching, and consists of hexagonal plates composed of tripartite subunits that appear to self-assemble into a crystalline layer with a hexagonal symmetry. Small scales (termed fibrillar scales) accumulate on the crystalline plates during cell growth, eventually forming a carpet that itself may appear crystalline when fully formed. Heptagonal rosette scales are occasionally observed on the surface as well. The position of the crystalline plates is precisely mirrored by both the E and P fracture faces of the PM. The plate proper is underlain by membrane with a high concentration of intramembrane particles (IMPs) while the bands of membrane underlying the plate borders lack IMPs. Access of subunits and fibrillar scales to the cell surface following initial plate formation appears to be at the plate boundaries. This study suggests that cryptomonad flagellates may provide model systems for studying the self-assembly of cell surface components, and for relating membrane structure to function, as evidence suggests a major role for the PM in mediating periplast assembly and development.  相似文献   

3.
The assembly of cellulose microfibrils was investigated in artificially induced protoplasts of the alga, Valonia macrophysa (Siphonocladales). Primary-wall microfibrills, formed within 72 h of protoplast induction, are randomly oriented. Secondary-wall lamellae, which are produced within 96 h after protoplast induction, have more than three orientations of highly ordered microfibrils. The innermost, recently deposited micofibrils are not parallel with the cortical microtubules, thus indicating a more indirect role of microtubules in the orientation of microfibrils. Fine filamentous structures with a periodicity of 5.0–5.5 nm and the dimensions of actin were observed adjacent to the plasma membrane. Linear cellulose-terminal synthesizing complexes (TCs) consisting of three rows, each with 30–40 particles, were observed not only on the E fracture (EF) but also on P fracture (PF) faces of the plasma membrane. The TC appears to span both faces of the bimolecular leaflet. The average length of the TC is 350 nm, and the number of TCs per unit area during primary-wall synthesis is 1 per m2. Neither paired TCs nor granule bands characteristic of Oocystis were observed. Changes in TC structure and distribution during the conversion from primary- to secondary-wall formation have been described. Cellulose microfibril assembly in Valonia is discussed in relation to the process among other eukaryotic systems.Abbreviations TC terminal complex - EF E (outer leaflet) fracture face of the plasma membrane - PF P (inner leaflet) fracture face of the plasma membrane - MT microtubule - PS protoplasmic surface of the membrane  相似文献   

4.
Summary Photoautotrophically growing cultures of the fresh water cyanobacteriumAnacystis nidulans adapted to the presence of 0.4–0.5 M NaCl (about sea water level) with a lag phase of two days after which time the growth rate reassumed 80–90% of the control. Plasma and thylakoid membranes were separated from cell-free extracts of French pressure cell treatedAnacystis nidulans by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Identity of the plasma and thylakoid membrane fractions was confirmed by labeling of intact cells with impermeant protein markers prior to breakage and membrane isolation. Electron microscopy revealed that each type of membrane was obtained in the form of closed and perfectly spherical vesicles. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. On the average, diameters of plasma membrane vesicles from salt adapted cells were only one-third of the diameters of corresponding vesicles from control cells. By contrast, the diameters of thylakoid membrane vesicles were the same in both cases.Freeze-etching the cells and counting the number of membrane-intercalating particles on both protoplasmic and exoplasmic fracture faces of plasma and thylakoid membranes indicated a roughly 50% increase of the particle density in plasma membranes during the adaptation process while that in thylakoid membranes was unaffected. Comparison between particle densities on isolated membranes and those on corresponding whole cell membranes permitted an estimate as to the percentage of inside-out and right-side-out vesicles. Stereometric measurement of particle sizes suggested that two distinct sub-populations of the particles in the plasma membranes increased during the adaptation process, tentatively correlated to the cytochrome oxidase and sodium-proton antiporter, respectively. The effects of salt adaptation described in this paper were fully reversed upon withdrawal of the additional NaCl from the growth medium (deadaptation). Moreover, they were not observed when the NaCl was replaced by KCl.Abbreviations CM cytoplasmic or plasma membrane - ICM intracytoplasmic or thylakoid membrane - EF exoplasmic fracture face - PF protoplasmic fracture face - DABS diazobenzosulfonate; Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonate - PMSF phenylmethylsulfonylfluoride Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

5.
Summary Freeze-fracture studies were conducted on the membranes of normal cockroach hemocytes. The plasmalemma is asymmetric with the A fracture face containing 80–100 Å membrane intercalated particles at a concentration of 2500/2. The B fracture face contains 120–150 Å particles with a relatively low density (800/2). The nuclear envelope displays an asymmetry with the A fracture face containing 1500 particles/2 and the B face containing 300/ 2. No significant particle size differences were observed in nuclear envelope fracture faces. Two types of symmetric membranes were also found in these cells. Both A and B fracture faces of the membrane surrounding the numerous cytoplasmic inclusion bodies contain particle sizes and concentrations similar to the B face of the plasmalemma. A second type of symmetry was observed in cells apparently engaged in exocytosis. Vesicles (0.1 D) from this process were completely particle free on both fracture faces. Such particle free vesicles could be found in the cytoplasm, attached to the plasmalemma, or completely separated from the cell.Supported by a Pharmaceutical Manufacturers Association Foundation Fellowship.The author wishes to thank Ms. Annalena K. Charla for assistance in plate preparation, Dr. Julius Schultz and the Papanicolaou Cancer Research Institute for use of the freeze-etch device, and Dr. David Smith for the electron microscope facilities.  相似文献   

6.
Summary YoungFunaria protonemata were treated with Monensin (10–6 M) and Cytochalasin (CB) (2×10–5 M). The influence of the inhibitors on a) elongation growth, b) cell fine structure and c) particle rosettes within the plasma membrane after freeze fracture was observed. Monensin stopped cell growth, caused swelling of the mitochondria and plastids and inhibited the secretory activity of the Golgi apparatus within about 15 minutes. The number of rosettes in the PF of the plasma membrane was distinctly reduced after 4–5 minutes and decreased further to only very few after 30 minutes. The tip to base gradient in distribution was maintained for a long time. The effects were reversible, regeneration occurred within 3 hours. CB treatment showed no effect on elongation growth and cell fine structure. The number of rosettes, however, was strongly reduced within 3 minutes exposure time and their distribution was nearly uniform then. Number and tip to base gradient increased again after 6 minutes intoxication. The results are discussed in regard to the turn over of the rosettes.Abbreviations CB Cytochalasin B - PF protoplasmic fracture face - F-vesicle flat vesicle - F-Actin filamentous actin - G-Ac-tin globular actin  相似文献   

7.
A model system with a high phagosomal membrane turnover has been developed: During a 45-min period Tetrahymena cells endocytoze 186 latex beads (diameter: 2.02 m) per average cell; 166 of these beads are then exocytozed in the course of the following 145 min. During the endocytotic phase an average cell is approximated to fabricate 1200 m2 phagosomal membrane. Freeze-etch electronmicroscopy reveals that both fracture faces of the nascent phagosomal membrane are associated with the typical 85 Å-particles in approximately equal numbers. Mature phagosomal membranes, however, show an unequal particle distribution. Smooth areas, smooth areas bordered with a fracture rim, and particle-associated depressions up to a diameter of 130 nm can be observed especially on fracture faces of mature phagosomes in the endocytotic phase. These are discussed with respect to membrane fusion.This paper is dedicated to Mr. W. Batz who died tragically on February 7, 1974  相似文献   

8.
Particle frequency of the peribacteroid membrane (PBM) from nodules of Glycine max (L.) Merr. cv. Maple Arrow infected with Bradyrhizobium japonicum 61-A-101 (wild-type strain) was determined by freeze-fracturing to be about 2200·m-2 in the protoplasmic fracture face and 700·m-2 in the exoplasmic fracture face. In membranes isolated from nodules infected with the mutant RH 31-Marburg of B. japonicum, the particle frequency was similar in both fracture faces with 1200–1300 particles·m-2. Analysis of particlesize distribution on peribacteroid membranes showed a loss, especially of particle sizes larger than 11 nm, in the mutant-infected nodules. Two-dimensional gel electrophoresis (isoelectric focussing and sodium dodecyl sulfate-polyacrylamide) showed 27 different polypeptides in the PBM from nodules infected with the wild-type strain, four of which were absent from the PBM of nodules infected with the mutant RH 31-Marburg, which also exhibited one extra small-molecular-weight polypeptide. At least 14 of the 27 polypeptides in the PBM from the wild-type-infected nodule were glycoproteins. In three of these glycoproteins, post-translational modifications were either lacking or different when the membrane was derived from mutant-infected nodules.Abbreviations EF exoplasmatic fracture face - HRPO horse radish peroxidase - IEF Isoelectric focussing - PBM peribacteroid membrane - PF protoplasmatic fracture face - PNA peanut agglutinin - PSA Pisum sativum agglutinin - SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

9.
Cell wall structure in the xylem parenchyma ofCryptomeria   总被引:1,自引:1,他引:0  
S. C. Chafe 《Protoplasma》1974,81(1):63-76
Summary Cell wall structure in ray and axial parenchyma cells in the wood ofCryptomeria was shown to be typically crossed polylamellate and dissimilar to the characteristically layered wall of fibers and tracheids. Ray cells differed from axial cells in terms of form and also in the relative inclination of crossed microfibrillar helices in the cell wall. This feature was reflected by positive birefringence in ray cells and negative birefringence in axial cells. Localized wall thickenings,viz. transverse bars in ray cells and longitudinal ribs in axial cells, also displayed crossed polylamellate structure. This observation contrasts with the exclusively longitudinal microfibrillar orientation previously reported for longitudinal ribs in elongated parenchyma cells of primary tissue. On the basis of similar microfibrillar orientations between outer and inner wall lamellae, the cell walls ofCryptomeria parenchyma were judged to be predominantly secondary.Lignin was heterogeneously distributed in lamellate fashion and a high concentration characterized the thin middle lamella. Both types of parenchyma suggested a higher lignin content than adjacent longitudinal tracheids.  相似文献   

10.
T. Kagawa  A. Kadota  M. Wada 《Protoplasma》1992,170(3-4):186-190
Summary The junction between the plasma membrane and the cell wall in the subapical region of tip-growing protonemata of the fernAdiantum capillus-veneris was visualized by plasmolyzing the cells with a 1 M solution of NaCl. When the protonemata were treated with this solution, cells were rapidly plasmolyzed and the plasma membrane became detached from the cell wall around the entire periphery of the cell, with the exception of the subapex. In the subapical region, the connection between the cell wall and the plasma membrane remained undisturbed, whereas the membrane in other regions, as well as at the apex, was detached from the cell wall. As a result, the protoplasm appeared to adhere to the wall by a ringlike band of plasma membrane at the subapex. The location of the junction coincided with that of a circular array of microtubules (MTs) and microfilaments (MFs) at the cell cortex. The subapical junction disappeared when protonemata were treated with colchicine, cytochalasin B (CB), and blue-light irradiation, all of which are known to disrupt circular arrays of MTs. CB and blue light also disrupt the array of MFs but colchicine does not. Thus, the junction depends on the cortical MTs and not on the MFs. This finding indicates that the junction between the plasma membrane and the cell wall is sustained by a cortical array of MTs and suggests the presence of a specific and localized transmembrane structure.Abbreviations CB cytochalasin B - MF microfilament - MT microtubule  相似文献   

11.
I. Tsekos  H. -D. Reiss 《Protoplasma》1992,169(1-2):57-67
Summary Cells of thalli at different developmental stages of the epiphytic marine red algaErythrocladia subintegra have been studied by freeze-etching. It was found that the plasma membrane exhibits linear microfibril-termnal synthesizing complexes (TCs), randomly distributed consisting of four rows of linearly-arranged particles (average diameter of particles 8.6 nm); each row of TCs consists of 5–33 particles (average 15). The TCs were observed on both fracture faces (PF and EF) but more clearly on the PF face. These structures appear to span both the outer and inner leaflets of the plasma membrane (transmembrane complexes)-The TCs have stable width (35 nm) and vary in length (41–311 nm, average 181 nm). The TCs subunits are highly ordered arrays forming a semicylinder. The average density of TCs on the PF face is 5.5TC/m2. The microfibrils are randomly distributed and have a mean width of 39.4 nm (ranging from 16 to 70 nm). Many TCs are associated with the ends of microfibrils and microfibril imprints. The structural characteristics of linear TCs in the red algaErythrocladia are compared with those of the so far investigated Chlorophyta spp. All results favour the suggestion that TCs in the plasma membrane ofErythrocladia cells are involved in the biosynthesis, assembly and orientation of microfibrils.  相似文献   

12.
Summary The chloroplasts ofEuglena gracilis have been examined by freeze-cleaving and deep-etching techniques.The two chloroplast envelope membranes exhibit distinct fracture faces which do not resemble any of the thylakoid fracture faces.Freeze-cleaved thylakoid membranes reveal four split inner faces. Two of these faces correspond to stacked membrane regions, and two to unstacked regions. Analysis of particle sizes on the exposed faces has revealed certain differences from other chloroplast systems, which are discussed. Thylakoid membranes inEuglena are shown to reveal a constant number of particles per unit area (based on the total particle number for both complementary faces) whether they are stacked or unstacked.Deep-etchedEuglena thylakoid membranes show two additional faces, which correspond to true inner and outer thylakoid surfaces. Both of these surfaces carry very uniform populations of particles. Those on the external surface (the A surface) are round and possess a diameter of approximately 9.5 nm. Those on the inner surface (the D surface) appear rectangular (as paired subunits) and measure approximately 10 nm in width and 18 nm in length. Distribution counts of particles show that the number of particles per unit area revealed by freeze-cleaving within the thylakoid membrane approximates closely the number of particles exposed on the external thylakoid surface (the A surface) by deep-etching. The possible significance of this correlation is discussed. The distribution of rectangular particles on the inner surface of the thylakoid sac (D surface) seems to be the same in both stacked and unstacked membrane regions. We have found no correlation between the D surface particles and any clearly defined population of particles on internal, freeze-cleaved membrane faces. These and other observations suggest that stacked and unstacked membranes are similar, if not identical in internal structure.  相似文献   

13.
Summary Myxamoebae ofDidymium iridis were removed from the bacterial food source and induced to encyst by transfer to 10 mM phosphate buffer. After 24 hours of induction approximately 90% of the myxamoebae had differentiated into microcysts. The kinetics of encystment were not significantly affected by pH or osmolarity of the encystment medium. Early stages of encystment were distinguished by the appearance of autophagic vacuoles and an extracellular slime-like sheath. The outer wall layer, consisting of dense fibrils, was unevenly deposited after 4 hours. An electron-lucent, second wall layer appeared between 5–10 hours followed by a densely packed, third wall layer adjacent to the plasma membrane. Wall formation appeared to involve smooth-membraned vesicles of possible Golgi origin. The vesicle contents and outer wall layer reacted with the periodic acid-silver methenamine stain for polysaccharide. The density of intramembrane particles of the protoplasmic fracture face increased during encystment with a gradual formation of aggregates of particles.Florida Agricultural Experiment Station Journal Series No. 3473.  相似文献   

14.
The non-fruiting myxobacteriumC. johnsonii will not attack living cells ofAerobacter aerogenes orSaccharomyces cerevisiae. Autoclaved cells of both organisms are however lysed but in different ways. WithA. aerogenes the cell contents are dissolved leaving an outer membrane which is not further attacked. With the yeast the wall is lysed and a structure resembling a spheroplast remains. Glucanase is produced by the myxobacterium when grown on autoclaved whole yeast. No glucanase is produced when the organism is grown on autoclavedA. aerogenes.  相似文献   

15.
T. Murata  M. Wada 《Protoplasma》1989,151(2-3):73-80
Summary Microtubule organization during preprophase band development was investigated using immunofluorescence microscopy in filamentous protonemal cells (approx. 600 m in length, 20 m in width) ofAdiantum capillus-veneris L. Protonemata pre-cultured under red light were transferred to continuous blue light or total darkness to induce synchronous cell division. Preprophase bands were found under both light conditions. In an early stage of development, the preprophase band which is transverse to the cell axis overlapped with an interphase cortical array of microtubules which is random or parallel to the cell axis. The interphase cortical array disappeared thereafter. While the width of the preprophase band became narrow during development under dark conditions, under blue light conditions it did not.Spatial and temporal aspects of the disappearance of the interphase cortical array of microtubules were also investigated. The interphase cortical array began to disappear at nearly the same time as the beginning of preprophase band formation. Under blue light, the disruption of cortical microtubules started at approx. 150 m from the tip (approx. 120 m from the nucleus), and spread toward the tip as far as the nuclear region and toward the base to an area approx. 300–400 m from the tip. Cortical microtubules remained in the basal part of the protonema. The pattern of disappearance between the tip and nucleus could not be determined. Under dark conditions, the pattern of the disappearance of cortical microtubules was somewhat different in many cells from that encountered with exposure to blue light. Microtubules first re-oriented from longitudinal to transverse, and then gradually disappeared. In some cells, the pattern of disappearance was similar to that observed under blue light.Abbreviations DAPI 4, 6-diamidino-2-phenylindole - ICM interphase cortical microtubules - PBS phosphate buffered saline - PPB preprophase band - MT microtubule  相似文献   

16.
Hybridizations ofElymus nutans andE. jacquemontii were carried out with one species ofPseudoroegneria (S genome), and 20Elymus species, each containing either of the SH, SY, SYH, or SYW genomes. Chromosome configurations were analysed at metaphase I of the two target taxa and their interspecific hybrids. It is concluded that (i)E. nutans is an allohexaploid containing the SYH genomes, andE. jacquemontii is an allotetraploid having the SY genomes; (ii) the genomic affinity is associated with the geographic distance between the species studied; (iii) minor genomic structural rearrangements have occurred within the hexaploid taxon ofE. nutans.  相似文献   

17.
Summary Voltage clamp studies show that the wild-type membrane ofParamecium tetraurelia contains a conductance component which is sensitive to hyperpolarization. This component manifests itself as anomalous, or inward going, rectification of membrane voltage in response to applied constant current pulses and as a hyperpolarizing spike when no K is added to the external solution (Y. Satow, C. Kung, 1977.J. Comp. Physiol. 11999). Like the conductances which underlie anomalous rectification in other cells, the hyperpolarization-sensitive conductance inParamecium is specific for K, and the magnitude of the voltage-dependent conductance change depends not only on voltage but also on external potassium concentration. The internal potassium ion concentration ofParamecium is calculated to be between 17 and 18mm.  相似文献   

18.
Summary The patterns of F-actin in relation to microtubule (Mt) organization in dividing root tip cells ofAdiantum capillus veneris were studied with rhodamine-phalloidin (RP) labelling and tubulin immunofluorescence. Interphase cells display a well organized network of cortical/subcortical, endoplasmic and perinuclear actin filaments (AFs), not particularly related to the interphase Mt arrays. The cortical AFs seem to persist during the cell cycle while the large subcortical AF bundles disappear by preprophase/prophase and reappear after cytokinesis is completed. In some but not all of the preprophase cells the cortical AFs tend to form a band (AF-PPB) coincident with the preprophase band of Mts (Mt-PPB). In metaphase and anaphase cells AFs are localized in the cell cortex, around the spindle and inside it coincidently with kinetochore Mt bundles. During cytokinesis AFs are consistently found in the phragmoplast. In oryzalin treated cells neither Mt-PPBs, spindles and phragmoplasts exist, nor such F-actin structures can be observed. In cells recovering from oryzalin, AF-PPBs, AF kinetochore bundles and AF phragmoplasts reform. They show the same pattern with the reinstating respective Mt arrays. In contrast, in cells treated with cytochalasin B (CB), AFs disappear but all categories of Mt arrays form normally.These observations show that F-actin organization in root tip cells ofA. capillus veneris differs from that of root tip cells of flowering plants examined so far. In addition, Mts seem to be crucial for F-actin organization as far as it concerns the PPB, the mitotic spindle, and the phragmoplast.Abbreviations AF actin filament - CB cytochalasin B - MBS m-male-imidobenzoyl-N-hydroxysuccinimide ester - MSB microtubule stabilizing buffer - Mt microtubule - PBS phosphate buffered saline - PPB preprophase band - RP rhodamine phalloidin  相似文献   

19.
C. H. Theunis 《Protoplasma》1990,158(3):176-181
Summary In isolated condition, the sperm cells ofSpinacia oleracea are no longer arranged in pairs as in the pollen grain. The vegetative membrane, which surrounds a sperm cell pair in a mature pollen grain, is lost during the isolation procedure. The sperm cells become spherical in shape.The isolated sperm cell is surrounded by an intact plasma membrane. The heterochromatic or euchromatic sperm cell nucleus is located in the cell center. Mitochondria are round to oval and have distinct cristae. Often they are clustered in groups of 5 to 10 mitochondria. Dictyosomes are present in the cytoplasm and consist of 4 to 5 cisterns. Endoplasmatic reticulum is mostly situated at the sperm cell periphery, as single cisterns very near the plasma membrane.From diameters of sectioned sperm cells in electron micrographs, it is possible to calculate the average diameter of the whole sperm cell. This average diameter is 3.66 m with a variation of 3.0 m to 4.2 m, resulting in an average volume of 25.6 m3. The nuclear volume is 12.8 m3 (50.0% of the whole cell) and the mitochondrial volume is 0.7 m3 (2.5% of the whole cell). The frequency distribution of the isolated sperm cells diameters shows only one peak with a normal distribution, indicating that there is no dimorphism in volume.  相似文献   

20.
Freeze-fracture electron microscopy of the cortical cytoplasm of unfixed, uncryoprotected, ultrarapidly frozen embryos of the marine brown algaPelvetia fastigiata has demonstrated the presence of numerous 0.5-m diameter, disc-shaped vesicles lying adjacent and nearly parallel to the plasma membrane. Some vesicles are fused with the plasma membrane through a narrow connection; this however appears to be a reversible attachment rather than an intermediate stage in the incorporation of the vesicle into the plasma membrane. The distribution of these connections in the plane of the membrane is not uniform; they tend to occur in patches. The fraction of vesicles that is fused with the plasma membrane at any one time appears to be related to a cell's perception of a stressful hypotonic imbalance between the internal and external concentrations of osmotically active compounds. Thus, a sudden 5% decrease in osmolarity of the artificial seawater medium just before freezing leads to a 38% increase in connections per unit membrane area, while a 20% decrease in osmolarity leads to a 75% increase in connections per unit area. Based on these findings and the corresponding ion-transport studies of R. Nuccitelli and L.F. Jaffe (1976, Planta131, 315–320), we postulate that the disc-shaped vesicles mediate short-term osmoregulation inPelvetia embryos by reversibly inserting chloride channels into the plasma membrane.Abbreviations ASW artificial sea water - IMP intramembrane particle - EF fracture face of a freeze-fractured exoplasmic membrane leaflet - PF fracture face of a protoplasmic membrane leaflet  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号