首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurosteroid modulatory sites present in the GABAA receptor complex in chick optic lobe were investigated, in order to evaluate whether allopregnanolone and alphaxalone act through a common site of action. Results showed that either allopregnanolone or alphaxalone present a single-component enhancement of [3H]flunitrazepam binding with EC50 of 1.18 ± 0.12 and 6.56 ± 0.86 M and Emax of 82.18 ± 5.80 and 62.98 ± 3.73 %, respectively. Epipregnanolone behaved as a partial agonist of these steroid modulatory sites with EC50 of 0.49 ± 0.15 M and Emax 12.34 ± 1.03%. Moreover, the addition of 16 M epipregnanolone to either allopregnanolone or alphaxalone decreased EC50 values to 0.54 ± 0,09 and 1.24 ± 0.25 M respectively, while Emax values were not significantly affected. On the other hand, additivity experiments disclosed that a maximal concentration (16 M) of alphaxalone in the presence of allopregnanolone failed to enhance [3H]flunitrazepam binding in excess of that produced by allopregnanolone alone. Results indicate that not only allopregnanolone and alphaxalone act through a common site of action, but such site is highly stereospeciflc with regard to the neurosteroid spatial configuration.  相似文献   

2.
Previously we have reported the presence of endogenous ligands that are involved in the regulation of the binding of muscimol to the GABA binding site of the GABAA receptors. Here, we report the presence of multiple forms of endogenous ligands in the brain which modulate the binding of flunitrazepam (FNZP) to the benzodiazepine (BZ) binding site of the GABAA receptor. Furthermore, one of the endogenous ligands for the BZ receptors, referred to as EBZ, has been identified as inosine based on the following observations: (1) standard inosine and the EBZ have identical NMR and UV spectra; (2) the elution profile of inosine and the EBZ from a HPLC column are indistinguishable, and (3) inosine and the EBZ show identical activity in inhibiting [3H]FNZP binding.  相似文献   

3.
Effects of methylmercury (MetHg) on the specific [3H]flunitrazepam binding were studied in rat cortical and cerebellar P2-fractions in vitro. MetHg did not affect significantly the specific [3H]flunitrazepam binding in unwashed P2-fraction but increased it marginally (by 16%) at 100 M in washed P2-fraction, in both brain regions.Muscimol (3 M), a GABAA agonist, stimulated the [3H]flunitrazepam binding by 30% to 50% depending on the brain region. In washed cerebellar membranes the enhancing response of muscimol was 10 to 14% lower after preincubation of the tissue with MetHg but in cerebral cortex MetHg did not modulate the muscimol response at all. The results indicate that Met-Hg may have region specific effects on GABAA receptors in vitro and the effect may depend on the occupational state of the GABA binding domain of the receptor complex.  相似文献   

4.
It has been demonstrated that the CNS is severely affected by hypoxic-ischemic insults during the prenatal-perinatal period, including imbalance in excitatory and inhibitory neurotransmitter release. Using a previously developed model of acute normobaric hypoxic hypoxia on chick embryos, we studied alterations observed both on [3H]GABA binding saturation parameters and on lactate concentration on successive embryonic days (ED). While maximal density of GABA binding sites (Bmax) from the low-affinity site was significantly reduced in an age-dependent manner, earlier stages of development (ED12 and 16) proving more vulnerable (ED12: control = 5.48 +/- 0.20, hypoxia = 3.90 +/- 0.39 pmol/mg prot, P < .05; ED16: control = 3.89 +/- 0.26, hypoxia = 2.80 +/- 0.28 pmol/mg prot, P < .05), ligand affinity (Kd) values and kinetic constants of the high-affinity site remained unaltered. Not unlikely, a physiological hypoxic state prevailing from ED17 up to hatching time rendered the whole embryo less sensitive to an externally induced hypoxic state (ED17: control = 2.93 +/- 0.06, hypoxia = 2.38 +/- 0.04 pmol/mg prot, P < .05; ED18: control = 2.97 +/- 0.12, hypoxia = 2.87 +/- 0.27 pmol/mg prot). Lactate levels in chick optic lobe homogenates were constant during development. The increase observed after hypoxic treatment compared to control value was significant at all stages studied, but increased percentage changes proved similar, indicating that all days of development equally perceive externally induced hypoxia. In conclusion, the present work demonstrates that after normobaric hypoxic hypoxia at different embryonic days, the embryo senses the externally induced hypoxic state as from ED12, but the GABA(A) receptor is differentially affected. It may be speculated that a different subunit composition of GABA(A) receptor is assembled in order to build a more stable receptor capable of resisting the physiological hypoxic state observed during the last few days before hatching.  相似文献   

5.
Conclusion Based on the pharmacological and biochemical evidence to date, especially that derived from the recombinantly expressed receptor studies, the suggestion that a novel GBRC-linked steroid recognition site exists becomes a cogent argument. The high affinity of the steroid site for certain naturally occurring metabolites of progesterone and glucocorticoids favors a physiologic role for these steroids in the regulation of brain excitability. Clearly, investigations of such a regulatory role is warranted. If present, it provides an important example of endocrine control of a major inhibitory neurotransmitter in the CNS. Moreover, as we gain a greater understanding of the molecular organization of the GBRC, the putative steroid site provides a novel target for the rational design of therapeutic agents for the treatment of anxiety, epilepsy, and insomnia.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

6.
1.Data obtained studying permeability characteristics of single Deiters' membranes in a microchamber system show that intracellular GABA can activate chloride in out passage with a GABAA pharmacology.2.The overall data suggest the presence of a chloride extrusion pump in these neurons based on intracellular GABA activated chloride channels.3.This conclusion takes up a previous theoretical suggestion that ionic channels could work as ionic pumps provided an energy input modifies the energy profile along the permeation path.4.According to our quantitative evaluation, this pumping mechanism works with a low yield and along a cycle with a strongly asymmetric behavior, being far from equilibrium due to powerful leakage pathways for chloride in these neurons.  相似文献   

7.
Mody  Istvan 《Neurochemical research》2001,26(8-9):907-913
Cell-to-cell communication in the mammalian nervous system does not solely involve direct synaptic transmission. There is considerable evidence for a type of communication between neurons through chemical means that lies somewhere between the rapid synaptic information transfer and the relatively non-specific neuroendocrine secretion. Here I review some of the experimental evidence accumulated for the GABA system indicating that GABAA receptor-gated Cl-channels localized at synapses differ significantly from those found extrasynaptically. These two types of GABAA receptor are involved in generating distinctly different conductances. Thus, the development and search for pharmacological agents specifically aimed at selectively altering synaptic and extrasynaptic GABAA conductances is within reach, and is expected to provide novel insights into the regulation of neuronal excitability.  相似文献   

8.
Gephyrin and collybistin are key components of GABAA receptor (GABAAR) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABAAR subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABAAR α2 and α3 subunit intracellular M3–M4 domain (but not α1, α4, α5, α6, β1–3, or γ1–3) with gephyrin. Curiously, GABAAR α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABAAR α2 also overlap at the start of the gephyrin E domain. This suggests that although GABAAR α3 interacts with gephyrin, GABAAR α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABAAR α2 and collybistin or GABAAR α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABAAR α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABAAR α2 is capable of “activating ” collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABAAR α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABAAR and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABAARs, but not GlyRs or other GABAAR subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABAARs containing the α2 subunit.  相似文献   

9.
10.
Neuroactive steroids and other positive modulators of GABAA receptors showed regional variation in both the efficacy and potency for modulation of [35S]TBPS binding to rat brain membrane homogenates, with biphasic concentration-dependence. GABA present in the binding assays prevented the enhancement phase of the steroid concentration-dependence plot while the antagonists bicuculline and RU5135 prevented the inhibition phase. Using recombinant GABAA receptors, expressed in insect cell line Sf9 using baculovirus, enhancement by steroids of [35S]TBPS binding was sensitive to the presence of the 2 subunit and the nature of the subunit (122S > 12, 62, 622S, and 62). As in cerebellum, addition of RU5135 reduced the inhibitory phase and revealed a small enhancement of TBPS binding by neuroactive steroids. The subunit-dependent interactions of steroid and GABA site ligands are consistent with a three-state model in which the receptor mono-liganded by GABA or steroid has a different affinity for TBPS than the resting state, and the receptor biliganded by GABA, steroid, or both has little affinity for TBPS.  相似文献   

11.
γ-aminobutyric acid or GABA is an amino acid that functionally acts as a neurotransmitter and is critical to neurotransmission. GABA is also a metabolite in the Krebs cycle. It is therefore unsurprising that GABA and its receptors are also present outside of the central nervous system, including in immune cells. This observation suggests that GABAergic signaling impacts events beyond brain function and possibly human health beyond neurological disorders. Indeed, GABA receptor subunits are expressed in pathological disease states, including in disparate cancers. The role that GABA and its receptors may play in cancer development and progression remains unclear. If, however, those cancers have functional GABA receptors that participate in GABAergic signaling, it raises an important question whether these signaling pathways might be targetable for therapeutic benefit. Herein we summarize the effects of modulating Type-A GABA receptor signaling in various cancers and highlight how Type-A GABA receptors could emerge as a novel therapeutic target in cancer.  相似文献   

12.
Synaptoneurosomes isolated from cerebral cortices of male Sprague-Dawley rats were used for studying GABAA receptor-regulated chloride influx. The in vitro effects of GABA antagonists, SR 95531 (a pyridazinyl GABA derivative) and bicuculline, on pentobarbital-stimulated, muscimol-stimulated or flunitrazepam-enhanced, muscimol-stimulated chloride uptake were studied. The chloride uptake was determined at 30°C, for 5 sec. Pentobarbital and muscimol produced a maximal stimulation of chloride uptake in cortical synaptoneurosomes at 500 M and 50M, respectively. SR 95531 as well as bicuculline had no effect on the basal uptake of chloride. Whereas, SR 95531 (0.3–30 M) and bicuculline (0.1–100 M), when added 5 min before muscimol (50 M), produced a significant concentration-dependent inhibition of muscimol (50 M)-stimulated chloride uptake (IC50 s of 0.89±0.11 M and 13.45±2.10M, respectively). In studies of the inhibitory effects of SR 95531 and bicuculline on pentobarbital (500 M)-stimulated chloride uptake, the IC50 s were 0.81±0.12 M and 3.86±1.14 M, respectively. SR 95531 exhibited a more potent inhibitory effect than bicuculline on flunitrazepam-enhanced, muscimol-stimulated chloride uptake. The results revealed that SR 95531 has a more potent antagonistic effect than bicuculline on GABAA-regulated chloride flux.  相似文献   

13.
Studies were carried out to determine whether barbiturates and neurosteroids share common recognition sites at the GABAA receptor complex in avian CNS. To achieve this, differentially prepared fresh and frozen synaptic membranes were used. Both the barbiturate, pentobarbital, and the neurosteroid, 3-hydroxy-5-pregnan-20-one, were able to stimulate GABA binding in both types of membranes. Stimulation differed markedly when both drugs were added jointly to different treated tissue. In frozen membranes drugs acted synergistically and were differentially displaced by picrotoxinin, while in fresh ones, where both compounds were inhibited by the convulsant, this additivity was absent. Post-freezing wash supernatants were collected and used as a source of putative endogenous factors involved in the above mentioned membrane differences. Addition of a high molecular weight fraction from supernatants to frozen synaptic membranes led to an inhibition of barbiturate and neurosteroid potentiation, as well as a loss of their additive effect. Our results indicate that GABAA receptor modulation by barbiturates and neurosteroids is affected by synaptic membrane treatment, with a common modulatory site in fresh membranes and separate recognition sites after a freeze-thawing procedure. There may also be endogenous factors involved in overlapping of modulatory sites, which would thus regulate GABAA receptor functionality by direct interaction with the complex.  相似文献   

14.
Brain GABAA/benzodiazepine receptors are highly heterogeneous. This heterogeneity is largely derived from the existence of many pentameric combinations of at least 16 different subunits that are differentially expressed in various brain regions and cell types. This molecular heterogeneity leads to binding differences for various ligands, such as GABA agonists and antagonists, benzodiazepine agonists, antagonists, and inverse agonists, steroids, barbiturates, ethanol, and Cl channel blockers. Different subunit composition also leads to heterogeneity in the properties of the Cl channel (such as conductance and open time); the allosteric interactions among subunits; and signal transduction efficacy between ligand binding and Cl channel opening. The study of recombinant receptors expressed in heterologous systems has been very useful for understanding the functional roles of the different GABAA receptor subunits and the relationships between subunit composition, ligand binding, and Cl channel properties. Nevertheless, little is known about the complete subunit composition of the native GABAA receptors expressed in various brain regions and cell types. Several laboratories, including ours, are using subunit-specific antibodies for dissecting the heterogeneity and subunit composition of native (not reconstituted) brain GABAA receptors and for revealing the cellular and subcellular distribution of these subunits in the nervous system. These studies are also aimed at understanding the ligand-binding, transduction mechanisms, and channel properties of the various brain GABAA receptors in relation to synaptic mechanisms and brain function. These studies could be relevant for the discovery and design of new drugs that are selective for some GABAA receptors and that have fewer side effects.  相似文献   

15.
GABAA receptors are the major inhibitory transmitter receptors in the central nervous system. They are chloride ion channels that can be opened by γ-aminobutyric acid (GABA) and are the targets of action of a variety of pharmacologically and clinically important drugs. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to the formation of a large variety of distinct GABAA receptor subtypes in the brain. The majority of GABAA receptors seems to be composed of two α, two β and one γ subunit and the occurrence of a defined subunit stoichiometry and arrangement in αβγ receptors strongly indicates that assembly of GABAA receptors proceeds via defined pathways. Based on the differential ability of subunits to interact with each other, a variety of studies have been performed to identify amino acid sequences or residues important for assembly. Such residues might be involved in direct protein-protein interactions, or in stabilizing direct contact sites in other regions of the subunit. Several homo-oligomeric or hetero-oligomeric assembly intermediates could be the starting point of GABAA receptor assembly but so far no unequivocal assembly mechanism has been identified. Possible mechanisms of assembly of GABAA receptors are discussed in the light of recent publications.  相似文献   

16.
Ci S  Ren T  Su Z 《The protein journal》2008,27(2):71-78
The three-dimensional structure of the GABA A receptor that included the ligand/agonist binding site was constructed and validated by using molecular modeling technology. Moreover, the putative binding-mode of GABA and diazepam with GABAA receptor were investigated by means of docking studies. Based on an rmsd-tolerance of 1.0 angstroms, the docking of GABA to alpha1/beta2 interface resulted in three multi-member conformational clusters and model 2 was supported by homologous sequence alignment data and experimental evidence. On the other hand, the docking of diazepam to alpha1/gamma2 interface revealed five multi-member conformational clusters in the binding site and model 1 seemed to represent the correct orientation of diazepam in the binding site.  相似文献   

17.
18.
Ivanova  N. V.  Zhuk  O. V. 《Neurophysiology》2001,33(4):207-215
We developed mathematical models allowing us to calculate the parameters of pharmacokinetics of exogenous ligands based on the analysis of their pharmacodynamics under the direct influence of a pharmacological agent (agents), PhA, on tissues possessing the receptor–effector system for this PhA, i.e., on the biophase of action of this PhA. The dynamics of the paroxysmal activity induced by application to the rat brain cortex of convulsant drugs (modulators of the GABAA transmitter system) in different doses were studied. It has been demonstrated that the pharmacokinetic scheme of physiologically active substances, in the case of their direct application, can be interpreted using a chain-chamber model, whose parameters are determined by two irreversible processes of the first order: entry and elimination. The hypothesis supposing the irreversibility of the kinetic scheme of PhA mass transfer under conditions of direct application of these agents was experimentally verified.  相似文献   

19.
1. Studies about the permeation of labelled chloride and GABA across single plasma membranes microdissected from vestibular Deiters' neurons have yielded two unexpected results: (a) intracellular GABA stimulates chloride permeation in an asymmetric fashion (efflux being favoured); (b) under certain conditions GABA permeates by a diffusion mechanism in the out in direction across these plasma membranes.2. These two main results have been obtained over many years together with a host of other indications about the fine mechanism of these events. Thus, a picture has emerged of their physiological meaning within the context of the functioning of the GABAA synapses between the Purkinje cells and the Deiters' neurons.3. In short, it is proposed that at these synapses GABA accumulates into the postsynaptic neuron after its release and activation of the postsynaptic receptors. GABA accumulated in the Deiters' neurons is involved in the process of chloride extrusion to build an inward directed electrochemical gradient for chloride.  相似文献   

20.
In the internal granular layer of the cerebellar cortex the polysynaptic complexes called glomeruli consist mainly of homogeneous populations of glutamatergic and GABAergic synapses, both located on granule cell dendrites. A subcellular fraction enriched in glomeruli was prepared from rat cerebellum, and the distribution of GABAA and of benzodiazepine binding sites between membranes derived from this fraction (fraction G) and from a total cerebellar homogenate (fraction T) was studied. The benzodiazepine and GABA binding sites were measured by the binding of agonists [3H]flunitrazepam and [3H]muscimol, respectively. The results indicate that both binding sites are present, but only slightly enriched, in the glomerular synapses. We found a muscimol/flunitrazepam binding site ratio of two, which is consistent with the enrichement of muscimol binding sites in the granular layer shown by both autoradiographic with radioactive glutamatergic ligands and in situ hybridization experiments respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号