首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen penned and 17 free-ranging white-tailed deer (Odocoileus virginianus Rafinesque) were singularly or repeatedly immobilized with 100 mg xylazine hydrochloride (HCl) and 300 mg ketamine HCl. The mean times from intravenous injection to ambulation for 1.0, 2.0, and 4.0 mg/kg body weight doses of tolazoline HCl were 13.5, 10.5, and 9.2 min. Deer not receiving tolazoline HCl recovered in an average of 168 min. Heart rates significantly (P less than 0.001) increased from 47 to 83 beats/min after tolazoline HCl administration, representing a return to normal rate. Tolazoline HCl had no effect on respiratory rate. A total of 85 reversals with tolazoline HCl resulted in no apparent adverse reactions.  相似文献   

2.
Yohimbine hydrochloride (YH) effectively reversed the immobilizing effects of ketamine hydrochloride (KH) combined with xylazine hydrochloride (XH) in 48 wild polar bears (Ursus maritimus) handled in the summer. Single intravenous doses of YH ranging between 0.029 and 0.198 mg/kg resulted in a median time of 10 min (range: 1-123 min) to post-injection recovery from KH-XH immobilization. Convulsions and muscle twitching were observed in some bears after YH was administered and one death occurred. Median respiratory rate and heartbeat rate increased from 5 br/min to 12 br/min and 51 BPM to 79 BPM, respectively, soon after yohimbine was administered. The median time to recovery after KH-XH administration, including processing and handling time, was 113 min for bears administered yohimbine and 202 min for bears not administered YH. After YH-induced recovery, polar bears showed signs of reduced awareness and many remained recumbent for undetermined periods although they could coordinate movements, stand, and walk or run if disturbed. YH proved to be a useful antagonist to immobilization induced by KH-XH in a field situation.  相似文献   

3.
4.
The mean time to initial reversal response (MTIRR) and the mean time to perching (MTP) were measured in 34 raptors sedated with xylazine hydrochloride with dosages ranging from 1.0 to 20 mg/kg intravenously (i.v.) and 2.5 to 20.0 mg/kg intramuscularly (i.m.). Yohimbine hydrochloride, given i.v. (0.2 mg/kg), 30 min after the injection of the xylazine, shortened the MTIRR and MTP compared to the controls. No adverse effects were noted due to the use of yohimbine. Yohimbine appeared to be a safe and effective antagonist for xylazine sedation in raptors.  相似文献   

5.
Six bengal tigers (Panthera tigris tigris) were immobilized five times at 2-wk intervals with ketamine hydrochloride (ketamine) and xylazine hydrochloride (xylazine) mixtures at different dose levels. Hematology and serum chemistry analyses on blood samples collected at each immobilization remained normal during the study. There were acute changes in hematocrit, chloride, potassium, glucose, and bilirubin as a function of xylazine dose level. The effect of yohimbine hydrochloride (yohimbine) on the depth and duration of immobilization was evaluated in a crossover design with every animal serving as its own control at each dose. Administration of yohimbine resulted in recovery of the animals within 4-8 min in contrast to greater than 60 min with no yohimbine treatment. There were no adverse effects noted with the yohimbine treatment and the tigers did not exhibit a relapse over the next 24 hr. Yohimbine at a dose of 5-15 mg per adult tiger provided effective reversal of 50-150 mg of xylazine per tiger.  相似文献   

6.
7.
8.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

9.
以2-丁基-3-(4-羟基苯甲酰基)-5-硝基苯并呋喃为原料,通过醚化、还原、磺酰胺化、N-烃化、成盐等反应合成盐酸决奈达隆,总收率为57.8%,产物经‘H NMR和MS等谱图确证.该工艺原料易得,条件温和,产率较高,适合工业化生产.  相似文献   

10.
Thirteen captive and one free-ranging white-tailed deer (Odocoileus virginianus) were immobilized one to six times each with ketamine hydrochloride and xylazine hydrochloride during winter and spring in northern Minnesota. Administration of 0.09 to 0.53 mg of yohimbine hydrochloride per kg IV after each trial reversed the immobilization. The deer raised their heads within a median time of 2.0 min, stood in 6.0 min and walked away in 9.5 min. No adverse side effects were observed for several weeks following the immobilization.  相似文献   

11.
Eight captive wapiti (Cervus elaphus nelsoni) were injected with xylazine hydrochloride on two occasions during March and April 1984. Animals were grouped into a modified Latin square design and were given either successive injections of yohimbine hydrochloride and 4-aminopyridine (4-AP) to antagonize the sedative effects of xylazine hydrochloride or permitted an unantagonized recovery. Induction times ranged from 3 to 26 min with excited and wild animals requiring a supplementary dose. Time until walking was significantly (P less than 0.005) shorter in the group given successive injections (given i.v.) of the reversal drugs yohimbine hydrochloride (0.15 mg/kg) and 4-AP (0.30 mg/kg) than those animals during unantagonized recoveries. Marked increase in heart rate and respiratory rate were observed in animals within 3 min after successive injections of yohimbine hydrochloride and 4-AP. There was no occurrence of convulsions and animals did not relapse to profound sedation. Slight muscle tremors were observed in one animal which received a dose of 0.35 mg/kg of 4-AP. This drug combination can reduce markedly the duration of recovery from xylazine hydrochloride-induced sedation in wapiti.  相似文献   

12.
On annealing at temperatures near 100 degrees C, carbon-centered radicals migrate to sulfur-centered radicals in X-irradiated crystals of L-alpha-amino-n-butyric acid hydrochloride, CH3CH2CH(NH3-Cl)COOH, containing L-cysteine hydrochloride, SHCH2CH(NH3Cl)COOH. Samples containing 0, 0.5, 1.0, and 1.5% L-cysteine hydrochloride were studied. When no cysteine is present, the carbon-centered radical formed by X irradiation, CH3CH2CHOOH, decays according to a second-order diffusion-controlled rate equation. In samples containing cysteine, the same carbon-centered radicals are formed, but on annealing, they migrate to cysteine, where a perithiyl radical, RSS, is formed. The transfer of carbon-centered radicals to perthiyl radicals follows a pseudo first-order rate equation with an activation energy of 1.15 eV. A decrease in the initial concentration of the carbon-centered radicals or an increase in the initial concentration of cysteine results in an increase in the transfer efficiency. The rate of growth of the perthiyl radical depends on both the initial concentration of cysteine and the initial concentration of carbon-centered radicals. The pseudo first-order rate constant increases when either the initial carbon-centered radical concentration increases or the initial cysteine concentration increases. The mechanism by which radicals move from one lattice site to another in the crystalline material is most likely hydrogen abstraction from a neighboring molecule.  相似文献   

13.
A combination of 100 mg ketamine hydrochloride (KH) and 20 mg xylazine hydrochloride (XH) was used to immobilize fishers (Martes pennanti). Four adult males were intramuscularly injected a total of five times at dosages between 22.4 to 29.0 mg/kg KH and 4.1 to 6.6 mg/kg XH. Mean (+/- SE) induction time and arousal time were 3.3 +/- 0.5 min and 76.8 +/- 12.1 min, respectively. Respiration, heart rate, and body temperature in response to sedation appeared normal. A 5:1 mixture of KH-XH appears to be a safe immobilizing agent for fishers.  相似文献   

14.
A mixture of 120 mg ketamine hydrochloride (KHCL)/20 mg xylazine hydrochloride (XHCL)/ml was used to immobilize 37 wild mountain lions (Felis concolor) 46 times. Observations were recorded during 37 trials that included kittens, adult females, and adult males. Dosages were based on 11 mg KHCL and 1.8 mg XHCL/kg estimated body weight. Actual doses for 24 lions requiring a single injection for immobilization ranged from 4.7-15.8 mg KHCL/kg and 0.8-2.6 mg XHCL/kg. Induction, duration, and recovery times did not differ (P greater than 0.05) between the sex and age classes. Two kittens were overdosed with the drug combination, but the effects were not life threatening. Eleven other lions, nine of which were initially underdosed, required additional injections of the drug combination for safe handling. Immobilization was characterized initially by semi-consciousness, open eyelids, pupillary dilation, and muscle rigidity. Later, most lions appeared unconscious, muscles relaxed, and breathing slowed considerably. No convulsions or hypersalivation occurred. The KHCL/XHCL mixture given at approximately 11 mg KHCL and 1.8 mg XHCL/kg body weight proved useful for immobilizing wild mountain lions for research purposes. Suggestions for case of immobilized cats are included.  相似文献   

15.
We captured 10 free-ranging desert mule deer (Odocoileus hemionus crooki) (five males and five females) by net-gun from a helicopter and immobilized them with xylazine hydrochloride (HCl) (100 mg) and ketamine HCl (300 to 400 mg) injected intramuscularly. Arousal and ambulation times were 13.9 +/- 4.2 and 14.3 +/- 4.2 min in eight deer injected intravenously with tolazoline HCl (3.0 mg/kg). We observed a curvilinear relationship (R = 0.50, P less than 0.01) between rectal temperature and time after induction of anesthesia. Mean peak temperature (41.4 C) occurred at 23.7 +/- 3.2 min postinduction and was greater (P less than 0.01) than the mean temperature measured initially (40.8 C). Heart and respiratory rates (108 beats/min and 75 breaths/min) were elevated prior to immobilization. Mean heart rate increased (P less than 0.05) from 90 +/- 9 beats/min in anesthetized deer to 120 +/- 13 beats/min after tolazoline HCl injection. A 20% capture-related mortality rate suggests this combination of physical and chemical capture has serious limitations. Captive deer permitted to recover from xylazine HCl-ketamine HCl immobilization without a reversal agent were able to walk in 290 +/- 79 min.  相似文献   

16.
The combination ketamine-xylazine was assessed as a surgical anaesthetic in the golden hamster. Several dose levels and routes of injection were evaluated. It was determined that 50-200 mg/kg bodyweight of ketamine with 10 mg/kg body weight of xylazine, when given by intraperitoneal injection, was a satisfactory general anaesthetic.  相似文献   

17.
18.
19.
20.
Ketamine hydrochloride (KH) and xylazine hydrochloride (XH) used in combination (KH-XH) were effective immobilants for captive and wild black bears (Ursus americanus). Single intramuscular injections of 1.5-17.1 mg of KH per kg body weight combined in an approximate ratio of 2:1 with 0.9-10.0 mg of XH per kg body weight immobilized bears for 1.5-197 min. Dosages most frequently used were 4.5-9 mg KH/kg with 2-4.5 mg XH kg. Supplemental administrations maintained tractability for up to 31 h. Immobilization was characterized by smooth induction, relaxed muscles, occasional groaning and vomition, no eye closure, no defecation, and a smooth recovery phase of variable length. Male and female bears responded similarly to KH-XH. Induction times for small bears (less than or equal to 25 kg) were shorter than for larger bears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号