首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 5'-leader of tobacco etch virus (TEV) genomic RNA directs the efficient translation from the naturally uncapped viral RNA. The TEV 143-nt 5'-leader folds into a structure that contains two domains, each of which contains RNA pseudoknots. The 5'-proximal pseudoknot 1 (PK1) is necessary to promote cap-independent translation (Zeenko, V., and Gallie, D. R. (2005) J. Biol. Chem. 280, 26813-26824). During the translation initiation of cellular mRNAs, eIF4G functions as an adapter that recruits many of the factors involved in stimulating 40 S ribosomal subunit binding to an mRNA. Two related but highly distinct eIF4G proteins are expressed in plants, animals, and yeast. The two plant eIF4G isoforms, referred to as eIF4G and eIFiso4G, differ in size (165 and 86 kDa, respectively) and their functional differences are still unclear. Although eIF4G is required for the translation of TEV mRNA, it is not known if eIF4G binds directly to the TEV RNA itself or if other factors are required. To determine whether binding affinity and isoform preference correlates with translational efficiency, fluorescence spectroscopy was used to measure the binding of eIF4G, eIFiso4G, and their complexes (eIF4F and eIFiso4F, respectively) to the TEV 143-nt 5'-leader (TEV1-143) and a shorter RNA that contained PK1. A mutant (i.e. S1-3) in which the stem of PK1 was disrupted resulting in impaired cap-independent translation, was also tested. These studies demonstrate that eIF4G binds TEV1-143 and PK1 RNA with approximately 22-30-fold stronger affinity than eIFiso4G. eIF4G and eIF4F bind TEV1-143 with similar affinity, whereas eIFiso4F binds with approximately 6-fold higher affinity than eIFiso4G. The binding affinity of eIF4G, eIF4F, and eIFiso4G to S1-3 was reduced by 3-5-fold, consistent with the reduction in the ability of this mutant to promote cap-independent translation. Temperature-dependent binding studies revealed that binding of the TEV 5'-leader to these initiation factors has a large entropic contribution. Overall, these results demonstrate the first direct interaction of eIF4G with the TEV 5'-leader in the absence of other initiation factors. These data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.  相似文献   

2.
Gallie DR 《Journal of virology》2001,75(24):12141-12152
The 5' leader of tobacco etch virus (TEV) genomic RNA directs efficient translation from the naturally uncapped viral mRNA. Two distinct regions within the TEV 143-nucleotide leader confer cap-independent translation in vivo even when present in the intercistronic region of a discistronic mRNA, indicating that the TEV leader contains an internal ribosome entry site (IRES). In this study, the requirements for TEV IRES activity were investigated. The TEV IRES enhanced translation of monocistronic or dicistronic mRNAs in vitro under competitive conditions, i.e., at high RNA concentration or in lysate partially depleted of eukaryotic initiation factor 4F (eIF4F) and eIFiso4F, the two cap binding complexes in plants. The translational advantage conferred by the TEV IRES under these conditions was lost when the lysate reduced in eIF4F and eIFiso4F was supplemented with eIF4F (or, to a lesser extent, eIFiso4F) but not when supplemented with eIF4E, eIFiso4E, eIF4A, or eIF4B. eIF4G, the large subunit of eIF4F, was responsible for the competitive advantage conferred by the TEV IRES. TEV IRES activity was enhanced moderately by the poly(A)-binding protein. These observations suggest that the TEV IRES directs cap-independent translation through a mechanism that involves eIF4G specifically.  相似文献   

3.
The interaction between VPg of turnip mosaic virus and wheat germ eukaryotic translation initiation factors eIFiso4E and eIFiso4F (the complex of eIFiso4E and eIFiso4G) were measured and compared. The fluorescence quenching data showed the presence of one binding site on eIFiso4E for VPg. Scatchard analysis revealed the binding affinity (K(a)) and average binding sites (n) for VPg were (8.51 +/- 0.21) x 10(6) M(-1) and 1.0, respectively. The addition of eIFiso4G to the eIFiso4E increased the binding affinity 1.5-fold for VPg as compared with eIFiso4E alone. However, eIFiso4G alone did not bind with VPg. The van't Hoff analyses showed that VPg binding is enthalpy-driven and entropy-favorable with a large negative DeltaH degrees (-29.32 +/- 0.13 kJmol(-1)) and positive DeltaS degrees (36.88 +/- 0.25 Jmol(-1)K(-1)). A Lineweaver-Burk plot indicates mixed-type competitive ligand binding between VPg and anthraniloyl-7-methylguanosine triphosphate for eIFiso4E. Fluorescence stopped-flow studies of eIFiso4E and eIFiso4F with VPg show rapid binding, suggesting kinetic competition between VPg and m(7)G cap. The VPg protein binds much faster than cap analogs. The activation energies for binding of eIFiso4E and eIFiso4F with VPg were 50.70 +/- 1.27 and 75.37 +/- 2.95 kJmol(-1) respectively. Enhancement of eIFiso4F-VPg binding with the addition of a structured RNA derived from tobacco etch virus suggests that translation initiation involving VPg occurs at internal ribosomal entry sites. Furthermore, the formation of a protein-RNA complex containing VPg suggests the possibility of direct participation of VPg in the translation of the viral genome.  相似文献   

4.
The 3' cap-independent translation element (BTE) of Barley yellow dwarf virus RNA confers efficient translation initiation at the 5' end via long-distance base pairing with the 5'-untranslated region (UTR). Here we provide evidence that the BTE functions by recruiting translation initiation factor eIF4F. We show that the BTE interacts specifically with the cap-binding initiation factor complexes eIF4F and eIFiso4F in a wheat germ extract (wge). In wge depleted of cap-interacting factors, addition of eIF4F (and to a lesser extent, eIFiso4F) allowed efficient translation of an uncapped reporter construct (BLucB) containing the BTE in its 3' UTR. Translation of BLucB required much lower levels of eIF4F or eIFiso4F than did a capped, nonviral mRNA. Both full-length eIF4G and the carboxy-terminal half of eIF4G lacking the eIF4E binding site stimulated translation to 70% of the level obtained with eIF4F, indicating a minor role for the cap-binding protein, eIF4E. In wge inhibited by either BTE in trans or cap analog, eIF4G alone restored translation nearly as much as eIF4F, while addition of eIF4E alone had no effect. The BTE bound eIF4G (Kd = 177 nm) and eIF4F (Kd = 37 nm) with high affinity, but very weakly to eIF4E. These interactions correlate with the ability of the factors to facilitate BTE-mediated translation. These results and previous observations are consistent with a model in which eIF4F is delivered to the 5' UTR by the BTE, and they show that eIF4G, but not eIF4E, plays a major role in this novel mechanism of cap-independent translation.  相似文献   

5.
Khan MA  Goss DJ 《Biochemistry》2012,51(7):1388-1395
VPg of turnip mosaic virus (TuMV) was previously shown to interact with translation initiation factor eIFiso4F and play an important role in mRNA translation [Khan, M. A., et al. (2008) J. Biol. Chem.283, 1340-1349]. VPg competed with cap analogue for eIFiso4F binding and competitively inhibited cap-dependent translation and enhanced cap-independent translation to give viral RNA a significant competitive advantage. To gain further insight into the cap-independent process of initiation of protein synthesis, we examined the effect of PABP and/or eIF4B on the equilibrium and kinetics of binding of VPg to eIFiso4F. Equilibrium data showed the addition of PABP and/or eIF4B to eIFiso4F increased the binding affinity for VPg (K(d) = 24.3 ± 1.6 nM) as compared to that with eIFiso4F alone (K(d) = 81.3 ± 0.2.4 nM). Thermodynamic parameters showed that binding of VPg to eIFiso4F was enthalpy-driven and entropy-favorable with the addition of PABP and/or eIF4B. PABP and eIF4B decreased the entropic contribution by 67% for binding of VPg to eIFiso4F. The decrease in entropy involved in the formation of the eIFiso4F·4B·PABP-VPg complex suggested weakened hydrophobic interactions for complex formation and an overall conformational change. The kinetic studies of eIFiso4F with VPg in the presence of PABP and eIF4B show 3-fold faster association (k(2) = 182 ± 9.0 s(-1)) compared to that with eIFiso4F alone (k(2) = 69.0 ± 1.5 s(-1)) . The dissociation rate was 3-fold slower (k(-2) = 6.5 ± 0.43 s(-1)) for eIFiso4F with VPg in the presence of PABP and eIF4B (k(-2) = 19.0 ± 0.9 s(-1)). The addition of PABP and eIF4B decreased the activation energy of eIFiso4F with VPg from 81.0 ± 3.0 to 44.0 ± 2.4 kJ/mol. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves to sequester initiation factors.  相似文献   

6.
Eukaryotic initiation factor (eIF) 4G plays an important role in assembling the initiation complex required for ribosome binding to an mRNA. Plants, animals, and yeast each express two eIF4G homologs, which share only 30, 46, and 53% identity, respectively. We have examined the functional differences between plant eIF4G proteins, referred to as eIF4G and eIFiso4G, when present as subunits of eIF4F and eIFiso4F, respectively. The degree to which a 5'-cap stimulated translation was inversely correlated with the concentration of eIF4F or eIFiso4F and required the poly(A)-binding protein for optimal function. Although eIF4F and eIFiso4F directed translation of unstructured mRNAs, eIF4F supported translation of an mRNA containing 5'-proximal secondary structure substantially better than did eIFiso4F. Moreover, eIF4F stimulated translation from uncapped monocistronic or dicistronic mRNAs to a greater extent than did eIFiso4F. These data suggest that at least some functions of plant eIFiso4F and eIF4F have diverged in that eIFiso4F promotes translation preferentially from unstructured mRNAs, whereas eIF4F can promote translation also from mRNAs that contain a structured 5'-leader and that are uncapped or contain multiple cistrons. This ability may also enable eIF4F to promote translation from standard mRNAs under cellular conditions in which cap-dependent translation is inhibited.  相似文献   

7.
Bi X  Ren J  Goss DJ 《Biochemistry》2000,39(19):5758-5765
It has been proposed that, during translational initiation, structures in the 5' untranslated region of mRNA are unwound. eIF4A, a member of the DEAD box family of proteins (those that contain a DEAD amino acid sequence), separately or in conjunction with other eukaryotic initiation factors, utilizes the energy from ATP hydrolysis to unwind these structures. As a step in defining the mechanism of helicase activity in the wheat germ protein synthesis system, we have utilized direct fluorescence measurements, ATPase assays, and helicase assays. The RNA duplex unwinding activity of wheat germ eIF4A is similar to other mammalian systems; however, eIF4F or eIFiso4F is required, probably because of the low binding affinity of wheat germ eIF4A for mRNA. Direct ATP binding measurements showed that eIF4A had a higher binding affinity for ADP than ATP, resulting in a limited hydrolysis and procession along the RNA in the helicase assay. The addition of eIF4B resulted in a change in binding affinity for ATP, increasing it almost 10-fold while the ADP binding affinity was approximately the same. The data presented in this paper suggest that eIF4F or eIFiso4F acts to position the eIF4A and stabilize the interaction with mRNA. ATP produces a conformational change which allows a limited unwinding of the RNA duplex. The binding of eIF4B either prior to or after hydrolysis allows for increased affinity for ATP and for the cycle of conformational changes to proceed, resulting in further unwinding and processive movement along the mRNA.  相似文献   

8.
The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ~10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.  相似文献   

9.
Genomes of some positive-strand RNA viruses do not contain cap-structure, but instead their 5'-end is covalently linked to a viral protein called VPg. Complex formation between VPg and cellular translation initiation factors (eIFs) has been extensively studied in the context of the model of this complex involvement in virus mRNA translation initiation and cellular protein translation shut down in infected cells. The potato virus (PVY) VPg was expressed in bacterial and baculovirus systems in order to investigate its binding capacity to wheat eIF4E and its isoform. Both purified recombinant eIF4E and eIF(iso)4E were identified in vitro as binding partners of the purified recombinant VPg by using affinity chromatography, as well in vivo by coexpressing of recombinant VPg and eIFs in insect cells with following complex purification using affinity chromatography. Besides it was shown that PVY VPg also formed a complex with endogenous insect eIF4E in vivo. PVY VPg interaction with eIF4E of wheat (non permissive plant for PVY), and also with so evolutionary distant partner as insect eIF4E suggests the conservation of general structural features of eIF4E implicated in the formation of the complex with VPg.  相似文献   

10.
11.
Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation initiation, because of a lack of a suitable source of VPg-linked viral RNA. We have now used the recently identified murine norovirus (MNV) as a model system for norovirus translation and have extended our previous studies with FCV RNA to examine the role of the other eIF4F components in translation initiation. We now demonstrate that, as with FCV, MNV VPg interacts directly with eIF4E, although, unlike FCV RNA, translation of MNV RNA is not sensitive to 4E-BP1, eIF4E depletion, or foot-and-mouth disease virus Lb protease-mediated cleavage of eIF4G. We also demonstrate that both FCV and MNV RNA translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect to their requirements for the components of the eIF4F translation initiation complex.  相似文献   

12.
Unlike other positive-stranded RNA viruses that use either a 5'-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 5' end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF 4 E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF 4 E by 4 E-BP 1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF 4 E and the cap structure or 4 E-BP 1, suggesting that VPg binds to eIF 4 E at a different site from both cap and 4 E-BP 1. This work lends support to the idea that calicivirus VPg acts as a novel 'cap substitute' during initiation of translation on virus mRNA.  相似文献   

13.
The wheat germ eukaryotic translation initiation factor (eIF) 4F binds tightly to the mRNA internal ribosome entry site (IRES) of tobacco etch virus (TEV) to promote translation initiation. When eIF4F is limiting, TEV is preferentially translated compared with host cell mRNA. To gain insight into the dynamic process of protein synthesis initiation and the mechanism of binding, the kinetics of eIF4F binding to TEV IRES were examined. The association rate constant (kon) and dissociation rate constant (koff) for eIF4F binding to IRES were 59 ± 2.1 μm−1 s−1 and 12.9 ± 0.3 s−1, respectively, comparable with the rates for capped RNA. Binding of eIF4E or eIF4F to the cap of mRNA is the rate-limiting step for initiation of cap-dependent protein synthesis. The concentration dependence of the reactions suggested a simple one-step association mechanism. However, the association rate was reduced more than 10-fold when KCl concentration was increased from 50 to 300 mm, whereas the dissociation rate constant was increased 2-fold. The addition of eIF4B and poly(A)-binding protein enhanced the association rate of eIF4F ∼3-fold. These results suggest a mechanism where eIF4F initially binds electrostatically, followed by a conformational change to further stabilize binding. Poly(A)-binding protein and eIF4B mainly affect the eIF4F/TEV association rate. These results demonstrate the first direct kinetic measurements of translation initiation factor binding to an IRES.  相似文献   

14.
Eukaryotic initiation factor eIF4E performs a key early step in translation by specifically recognizing the m?GpppN cap structure at the 5' end of cellular mRNAs. Many viral mRNAs lack a 5' cap and thus bypass eIF4E. In contrast, we reported a cap-independent translation element (PTE) in Pea enation mosaic virus RNA2 that binds and requires eIF4E for translation initiation. To understand how this uncapped RNA is bound tightly by eIF4E, we employ SHAPE probing, phylogenetic comparisons with new PTEs discovered in panico- and carmoviruses, footprinting of the eIF4E binding site, and 3D RNA modeling using NAST, MC-Fold, and MC-Sym to predict a compact, 3D structure of the RNA. We propose that the cap-binding pocket of eIF4E clamps around a pseudoknot, placing a highly SHAPE-reactive guanosine in the pocket in place of the normal m?GpppN cap. This reveals a new mechanism of mRNA recognition by eIF4E.  相似文献   

15.
The interaction between turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) and Arabidopsis thaliana eukaryotic initiation factor (iso)4E (eIF(iso)4E) was investigated to address the influence of potyviral VPg on host cellular translational initiation. Affinity chromatographic analysis showed that the region comprising amino acids 62-70 of VPg is important for the interaction with eIF(iso)4E. In vitro translation analysis showed that the addition of VPg significantly inhibited translation of capped RNA in eIF(iso)4E-reconstituted wheat germ extract. This result indicates that VPg inhibits cap-dependent translational initiation via binding to eIF(iso)4E. The inhibition by VPg of in vitro translation of RNA with wheat germ extract did not depend on RNase activity. Our present results may indicate that excess VPg produced at the encapsidation stage shuts off cap-dependent translational initiation in host cells by inhibiting complex formation between eIF(iso)4E and cellular mRNAs.  相似文献   

16.
RNAs of many positive strand RNA viruses lack a 5′ cap structure and instead rely on cap-independent translation elements (CITEs) to facilitate efficient translation initiation. The mechanisms by which these RNAs recruit ribosomes are poorly understood, and for many viruses the CITE is unknown. Here we identify the first CITE of an umbravirus in the 3′-untranslated region of pea enation mosaic virus RNA 2. Chemical and enzymatic probing of the ∼100-nucleotide PEMV RNA 2 CITE (PTE), and mutagenesis revealed that it forms a long, bulged helix that branches into two short stem-loops, with a possible pseudoknot interaction between a C-rich bulge at the branch point and a G-rich bulge in the main helix. The PTE inhibited translation in trans, and addition of eIF4F, but not eIFiso4F, restored translation. Filter binding assays revealed that the PTE binds eIF4F and its eIF4E subunit with high affinity. Tight binding required an intact cap-binding pocket in eIF4E. Among many PTE mutants, there was a strong correlation between PTE-eIF4E binding affinity and ability to stimulate cap-independent translation. We conclude that the PTE recruits eIF4F by binding eIF4E. The PTE represents a different class of translation enhancer element, as defined by its structure and ability to bind eIF4E in the absence of an m7G cap.Regulation of translation occurs primarily at the initiation step. This involves recognition of the 5′ m7G(5′)ppp(5′)N cap structure on the mRNA by initiation factors, which recruit the ribosome to the 5′-end of the mRNA (15). The 5′ cap structure and the poly(A) tail are necessary for efficient recruitment of initiation factors on eukaryotic mRNAs (3, 68). The cap is recognized by the eIF4E subunit of eukaryotic translation initiation factor complex eIF4F (or the eIFiso4E subunit of eIFiso4F in higher plants). The poly(A) tail is recognized by poly(A)-binding protein. In plants, eIF4F is a heterodimer consisting of eIF4E and eIF4G, the core scaffolding protein to which the other factors bind. eIF4A, an ATPase/RNA helicase, interacts with eIF4F but is not part of the eIF4F heterodimer (9, 10). For translation initiation, the purpose of eIF4E is to bring eIF4G to the capped mRNA. eIF4G then recruits the 43 S ternary ribosomal complex via interaction with eIF3.The RNAs of many positive sense RNA viruses contain a cap-independent translation element (CITE)3 that allows efficient translation in the absence of a 5′ cap structure (1113). In animal viruses and some plant viruses, the CITE is an internal ribosome entry site (IRES) located upstream of the initiation codon. Most viral IRESes neither interact with nor require eIF4E, because they lack the m7GpppN structure, which, until this report, was thought to be necessary for mRNA to bind eIF4E with high affinity (3, 14). Translation initiation efficiency of mRNA is also influenced by the length of, and the degree of secondary structure in the 5′ leader (1517).Many uncapped plant viral RNAs harbor a CITE in the 3′-UTR that confers highly efficient translation initiation at the 5′-end of the mRNA (1822). These 3′ CITEs facilitate ribosome entry and apparently conventional scanning at the 5′-end of the mRNA (17, 23, 24). A variety of unrelated structures has been found to function as 3′ CITEs, suggesting that they recruit the ribosome by different interactions with initiation factors (13).The factors with which a plant CITE interacts to recruit the ribosome have been identified for only a potyvirus, a luteovirus, and a satellite RNA. The 143-nt 5′-UTR CITE of the potyvirus, tobacco etch virus is an IRES that functions by binding of its AU-rich pseudoknot structure with eIF4G (25). It binds eIF4G with up to 30-fold greater affinity than eIFiso4G and does not require eIF4E for IRES activity. In addition to RNA elements, the genome-linked viral protein (VPg) of potyviruses may participate in cap-independent translation initiation by interacting with the eIF4E and eIFiso4E subunits of eIF4F and eIFiso4F, respectively (2631). In contrast, the 130-nt cap-independent translation enhancer domain (TED) in the 3′-UTR of satellite tobacco necrosis virus (STNV) RNA forms a long bulged stem-loop, which interacts strongly with both eIF4F and eIFiso4F and weakly with their eIF4E and eIFiso4E subunits (32), suggesting that the TED requires the full eIF4F or eIFiso4F for a biologically relevant interaction. Barley yellow dwarf luteovirus (BYDV) and several other viruses, have a different structure, called a BYDV-like CITE (BTE), in the 3′-UTR. The BTE is characterized by a 17-nt conserved sequence incorporated in a structure with a variable number of stem-loops radiating from a central junction (20, 33, 34). It requires and binds the eIF4G subunit of eIF4F and does not bind free eIF4E, eIFiso4E, or eIFiso4G, although eIF4E slightly enhances the BTE-eIF4G interaction (35). Other 3′ CITEs have been identified, but the host factors with which they interact are unknown.Here we describe unprecedented factor interactions of a CITE found in an umbravirus and a panicovirus. Umbraviruses show strong similarity to the Luteovirus and Dianthovirus genera in (i) the sequence of the replication genes encoded by ORFs 1 and 2, (ii) the predicted structure of the frameshift signals required for translation of the RNA-dependent RNA polymerase from ORF 2 (36, 37), (iii) the absence of a poly(A) tail, and (iv) the lack of a 5′ cap structure (37, 38). Umbraviruses are unique in that they encode no coat protein. For the umbravirus pea enation mosaic virus 2 (PEMV-2), the coat protein is provided by PEMV-1, an enamovirus (39). Uncapped PEMV-2 RNA (PEMV RNA 2), transcribed in vitro, is infectious in pea (Pisum sativa),4 indicating it must be translated cap-independently. The 3′-UTRs of some umbraviruses such as Tobacco bushy top virus and Groundnut rosette virus harbor sequences resembling BYDV-like CITEs (BTE).5 However, no BTE is apparent in the 3′-UTR of PEMV RNA 2. In this report we identify a different class of CITE in the 705-nt long 3′-UTR of PEMV RNA 2, determine its secondary structure, which may include an unusual pseudoknot, and we show that, unlike any other natural uncapped RNA, it has a high affinity for eIF4E, which is necessary to facilitate cap-independent translation.  相似文献   

17.
The poly(A)-binding protein (PABP) interacts with the eukaryotic initiation factor (eIF) 4G (or eIFiso4G), the large subunit of eIF4F (or eIFiso4F) to promote translation initiation. In plants, PABP also interacts with eIF4B, a factor that assists eIF4F function. PABP is a phosphoprotein, although the function of its phosphorylation has not been previously investigated. In this study, we have purified the phosphorylated and hypophosphorylated isoforms of PABP from wheat to examine whether its phosphorylation state affects its binding to poly(A) RNA and its interaction with eIF4G, eIFiso4G, or eIF4B. Phosphorylated PABP exhibited cooperative binding to poly(A) RNA even under non-stoichiometric binding conditions, whereas multiple molecules of hypophosphorylated PABP bound to poly(A) RNA only after free poly(A) RNA was no longer available. Together, phosphorylated and hypophosphorylated PABP exhibited synergistic binding. eIF4B interacted with PABP in a phosphorylation state-specific manner; native eIF4B increased the RNA binding activity specifically of phosphorylated PABP and was greater than 14-fold more effective than was recombinant eIF4B, whereas eIF4F promoted the cooperative binding of hypophosphorylated PABP. These data suggest that the phosphorylation state of PABP specifies the type of binding to poly(A) RNA and its interaction with its partner proteins.  相似文献   

18.
In wheat germ, the interaction between poly(A)-binding protein and eukaryotic initiation factor eIF 4G increases the affinity of eIF4E for the cap by 20-40-fold. Recent findings that wheat germ eIF4G is required for interaction with the IRES, pseudoknot 1 (PK1), of tobacco etch virus to promote cap-independent translation led us to investigate the effects of PABP on the interaction of eIF4F with PK1. The fluorescence anisotropy data showed addition of PABP to eIF4F increased the binding affinity approximately 2.0-fold for PK1 RNA as compared with eIF4F alone. Addition of both PABP and eIF4B to eIF4F enhance binding affinity to PK1 about 4-fold, showing an additive effect rather than the large increase in affinity shown for cap binding. The van't Hoff analyses showed that PK1 RNA binding to eIF4F, eIF4F.PABP, eIF4F.4B and eIF4F.4B.PABP is enthalpy-driven and entropy-favorable. PABP and eIF4B decreased the entropic contribution 65% for binding of PK1 RNA to eIF4F. The lowering of entropy for the formation of eIF4F.4B.PABP-PK1 complex suggested reduced hydrophobic interactions for complex formation. Overall, these results demonstrate the first direct effect of PABP on the interaction of eIF4F and eIF4F.4B with PK1 RNA.  相似文献   

19.
Khan MA  Goss DJ 《Biochemistry》2005,44(11):4510-4516
Previous kinetic binding studies of wheat germ protein synthesis eukaryotic translational initiation factor eIFiso4F and its subunit, eIFiso4E, with m(7)GTP and mRNA analogues indicated that binding occurred by a two-step process with the first step occurring at a rate close to the diffusion-controlled rate [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The kinetic effects of eIF4B, PABP, and wheat germ eIFiso4F with two mRNA cap analogues and the temperature dependence of this reaction were measured and compared. The Arrhenius activation energies for binding of the two mRNA cap analogues, Ant-m(7)GTP and m(7)GpppG, were significantly different. Fluorescence stopped-flow studies of the eIFiso4F.eIF4B protein complex with two m(7)G cap analogues show a concentration-independent conformational change. The rate of this conformational change was approximately 2.4-fold faster for the eIFiso4F.eIF4B complex compared with our previous studies of eIFiso4F [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The dissociation rates were 3.7- and 5.4-fold slower for eIFiso4F.Ant-m(7)GTP and eIFiso4F.m(7)GpppG, respectively, in the presence of eIF4B and PABP. These studies show that eIF4B and PABP enhance the interaction with the cap and probably are involved in protein-protein interactions as well. The temperature dependence of the cap binding reaction was markedly reduced in the presence of either eIF4B or PABP. However, when both eIF4B and PABP were present, not only was the energy barrier reduced but the binding rate was faster. Since cap binding is thought to be the rate-limiting step in protein synthesis, these two proteins may perform a critical function in regulation of the overall protein synthesis efficiency. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves as a scaffold for further initiation complex formation.  相似文献   

20.
Mir MA  Panganiban AT 《The EMBO journal》2008,27(23):3129-3139
The eIF4F cap-binding complex mediates the initiation of cellular mRNA translation. eIF4F is composed of eIF4E, which binds to the mRNA cap, eIF4G, which indirectly links the mRNA cap with the 43S pre-initiation complex, and eIF4A, which is a helicase necessary for initiation. Viral nucleocapsid proteins (N) function in both genome replication and RNA encapsidation. Surprisingly, we find that hantavirus N has multiple intrinsic activities that mimic and substitute for each of the three peptides of the cap-binding complex thereby enhancing the translation of viral mRNA. N binds with high affinity to the mRNA cap replacing eIF4E. N binds directly to the 43S pre-initiation complex facilitating loading of ribosomes onto capped mRNA functionally replacing eIF4G. Finally, N obviates the requirement for the helicase, eIF4A. The expression of a multifaceted viral protein that functionally supplants the cellular cap-binding complex is a unique strategy for viral mRNA translation initiation. The ability of N to directly mediate translation initiation would ensure the efficient translation of viral mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号