首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chromatin clusters containing CENP-A, a histone H3 variant, are found in centromeres of multicellular eukaryotes. This study examines the ability of alpha-satellite (alphoid) DNA arrays in different lengths to nucleate CENP-A chromatin and form functional kinetochores de novo. Kinetochore assembly was followed by measuring human artificial chromosome formation in cultured human cells and by chromatin immunoprecipitation analysis. The results showed that both the length of alphoid DNA arrays and the density of CENP-B boxes had a strong impact on nucleation, spreading and/or maintenance of CENP-A chromatin, and formation of functional kinetochores. These effects are attributed to a change in the dynamic balance between assembly of chromatin containing trimethyl histone H3-K9 and chromatin containing CENP-A/C. The data presented here suggest that a functional minimum core stably maintained on 30-70 kb alphoid DNA arrays represents an epigenetic memory of centromeric chromatin.  相似文献   

2.
Uracil is removed from DNA by the conserved enzyme uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin.  相似文献   

3.
Centromeres are defined by the presence of chromatin containing the histone H3 variant, CENP-A, whose assembly into nucleosomes requires the chromatin assembly factor HJURP. We find that whereas surface-exposed residues in the CENP-A targeting domain (CATD) are the primary sequence determinants for HJURP recognition, buried CATD residues that generate rigidity with H4 are also required for efficient incorporation into centromeres. HJURP contact points adjacent to the CATD on the CENP-A surface are not used for binding specificity but rather to transmit stability broadly throughout the histone fold domains of both CENP-A and H4. Furthermore, an intact CENP-A/CENP-A interface is a requirement for stable chromatin incorporation immediately upon HJURP-mediated assembly. These data offer insight into the mechanism by which HJURP discriminates CENP-A from bulk histone complexes and chaperones CENP-A/H4 for a substantial portion of the cell cycle prior to mediating chromatin assembly at the centromere.  相似文献   

4.
The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-ACnp1 chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-ACnp1 can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-ACnp1 chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-ACnp1 associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-ACnp1 for assembly into central domain chromatin, resulting in less CENP-ACnp1 and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-ACnp1 influence the extent of DNA at centromeres that is packaged in CENP-ACnp1 chromatin and the composition of this chromatin. Thus, CENP-ACnp1 chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-ACnp1 and other core histones.  相似文献   

5.
Nucleosomes containing the centromere-specific histone H3 variant centromere protein A (CENP-A) create the chromatin foundation for kinetochore assembly. To understand the mechanisms that selectively target CENP-A to centromeres, we took a functional genomics approach in the nematode Caenorhabditis elegans, in which failure to load CENP-A results in a signature kinetochore-null (KNL) phenotype. We identified a single protein, KNL-2, that is specifically required for CENP-A incorporation into chromatin. KNL-2 and CENP-A localize to centromeres throughout the cell cycle in an interdependent manner and coordinately direct chromosome condensation, kinetochore assembly, and chromosome segregation. The isolation of KNL-2-associated chromatin coenriched CENP-A, indicating their close proximity on DNA. KNL-2 defines a new conserved family of Myb DNA-binding domain-containing proteins. The human homologue of KNL-2 is also specifically required for CENP-A loading and kinetochore assembly but is only transiently present at centromeres after mitotic exit. These results implicate a new protein class in the assembly of centromeric chromatin and suggest that holocentric and monocentric chromosomes share a common mechanism for CENP-A loading.  相似文献   

6.
真核细胞的染色质组装是组蛋白和DNA有序地形成核小体和染色质的过程.通过调节DNA的开放或折叠状态,染色质组装不但影响遗传信息的编码和存储,也决定了遗传信息的提取和解读.作为染色质组装的重要调控因子,组蛋白变体和组蛋白伴侣在与DNA相关的生命活动进程中发挥着至关重要的作用.本文综述了组蛋白变体H2A.Z以及CENP-A进行染色质组装的研究进展,并着重讨论了组蛋白变体和组蛋白伴侣在染色质组装中的重要作用.  相似文献   

7.
In eukaryotes, DNA is packaged into chromatin by canonical histone proteins. The specialized histone H3 variant CENP-A provides an epigenetic and structural basis for chromosome segregation by replacing H3 at centromeres. Unlike exclusively octameric canonical H3 nucleosomes, CENP-A nucleosomes have been shown to exist as octamers, hexamers, and tetramers. An intriguing possibility reconciling these observations is that CENP-A nucleosomes cycle between octamers and tetramers in?vivo. We tested this hypothesis by tracking CENP-A nucleosomal components, structure, chromatin folding, and covalent modifications across the human cell cycle. We report that CENP-A nucleosomes alter from tetramers to octamers before replication and revert to tetramers after replication. These structural transitions are accompanied by reversible chaperone binding, chromatin fiber folding changes, and previously undescribed modifications within the histone fold domains of CENP-A and H4. Our results reveal a cyclical nature to CENP-A nucleosome structure and have implications for the maintenance of epigenetic memory after centromere replication.  相似文献   

8.
Centromeres are epigenetically defined by the centromere-specific histone H3 variant CENP-A. Specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, with CENP-A-dependent centromeres. Here, we show that the extended N-terminal tail of Caenorhabditis elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly; removal of this region prevents CENP-A loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-tail containing the predicted structured region binds to KNL-2, a conserved SANTA domain and Myb domain-containing protein (referred to as M18BP1 in vertebrates) specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode Caenorhabditis briggsae, despite divergence of the N-tail and KNL-2 primary sequences. Thus, the extended N-tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates a direct interaction between CENP-A and KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A–specific chaperone/targeting factor of the Scm3/HJURP family.  相似文献   

9.
Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms. CENP-A nucleosome assembly requires the Mis18 complex and the CENP-A chaperone HJURP. These factors localize to centromeres in telophase/G1, when new CENP-A chromatin is assembled. The mechanisms that control their targeting are unknown. In this paper, we identify a mechanism for recruiting the Mis18 complex protein M18BP1 to centromeres. We show that depletion of CENP-C prevents M18BP1 targeting to metaphase centromeres and inhibits CENP-A chromatin assembly. We find that M18BP1 directly binds CENP-C through conserved domains in the CENP-C protein. Thus, CENP-C provides a link between existing CENP-A chromatin and the proteins required for new CENP-A nucleosome assembly.  相似文献   

10.
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.  相似文献   

11.
Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.  相似文献   

12.
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.  相似文献   

13.
The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP-A. The epigenetic mechanisms that maintain CENP-A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP-A to naked centromeric DNA templates. In a recent report published in Science, such de novo centromere assembly of CENP-A is shown to be dependent on heterochromatin and the RNA interference pathway.  相似文献   

14.
Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.  相似文献   

15.
Black BE  Cleveland DW 《Cell》2011,144(4):471-479
Centromeres direct chromosome inheritance, but in multicellular organisms their positions on chromosomes are primarily specified epigenetically rather than by a DNA sequence. The major candidate for the epigenetic mark is chromatin assembled with the histone H3 variant CENP-A. Recent studies offer conflicting evidence for the structure of CENP-A-containing chromatin, including the histone composition and handedness of the DNA wrapped around the histones. We present a model for the assembly and deposition of centromeric nucleosomes that couples these processes to the cell cycle. This model reconciles divergent data for CENP-A-containing nucleosomes and provides a basis for how centromere identity is stably inherited.  相似文献   

16.
17.
A defining feature of centromeres is the presence of the histone H3 variant CENP-A(Cnp1). It is not known how CENP-A(Cnp1) is specifically delivered to, and assembled into, centromeric chromatin. Through a screen for factors involved in kinetochore integrity in fission yeast, we identified Sim3. Sim3 is homologous to known histone binding proteins NASP(Human) and N1/N2(Xenopus) and aligns with Hif1(S. cerevisiae), defining the SHNi-TPR family. Sim3 is distributed throughout the nucleoplasm, yet it associates with CENP-A(Cnp1) and also binds H3. Cells defective in Sim3 function have reduced levels of CENP-A(Cnp1) at centromeres (and increased H3) and display chromosome segregation defects. Sim3 is required to allow newly synthesized CENP-A(Cnp1) to accumulate at centromeres in S and G2 phase-arrested cells in a replication-independent mechanism. We propose that one function of Sim3 is to act as an escort that hands off CENP-A(Cnp1) to chromatin assembly factors, allowing its incorporation into centromeric chromatin.  相似文献   

18.
Centromeric nucleosomes contain a histone H3 variant called centromere protein A (CENP-A) that is required for kinetochore assembly and chromosome segregation. Two new studies, Jansen et al. (see p. 795 of this issue) and Maddox et al. (see p. 757 of this issue), address when CENP-A is deposited at centromeres during the cell division cycle and identify an evolutionally conserved protein required for CENP-A deposition. Together, these studies advance our understanding of centromeric chromatin assembly and provide a framework for investigating the molecular mechanisms that underlie the centromere-specific loading of CENP-A.  相似文献   

19.
The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-A(Cnp1) associates with gene promoters where histone H3 is depleted by the activity of the Hrp1(Chd1) chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-A(Cnp1) chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-A(Cnp1).  相似文献   

20.
Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments have indicated that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes - before and after assembly into nucleosomes - provide models to explain underlying molecular mechanisms at the centromere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号