首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (dPGJ(2)) is a metabolite of prostaglandin D(2), that binds to peroxisome proliferator-activated receptor gamma (PPARgamma). PPARgamma and prostaglandin D(2) synthase, which is required for dPGJ(2) synthesis, are predominantly expressed in macrophages. In contrast, IL-10 and IL-12 produced by macrophages stimulate Th1 and Th2 immune response, respectively. This study investigated the effect of dPGJ(2) on IL-10 and IL-12 production by macrophages in response to lipopolysaccharide (LPS). Our data clearly demonstrated that dPGJ(2) inhibits LPS-induced IL-10 and IL-12 production by macrophages. A different agonist of PPARgamma, 13-hydroxyoctadecadienoic acid, similarly inhibited the production of IL-10 and IL-12 in response to LPS. Further, dPGJ(2) did not appear to act through the PGD(2) receptor. These results suggest that dPGJ(2) may inhibit LPS-induced IL-10 and IL-12 production by macrophages through PPARgamma.  相似文献   

2.
15-deoxy-Delta(12,14) prostaglandin J(2) (15dPGJ(2)), a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, induced synergistic stimulation of DNA synthesis in the presence of phorbol dibutyrate (PDB) in Swiss 3T3 cells. This effect was dose-dependent and the maximum response was obtained at 2 microM 15dPGJ(2), although higher concentrations of 15dPGJ(2) were cytotoxic. Furthermore, 15dPGJ(2) synergizes with PDB to induce cell-cycle progression and cyclin D(1) expression. Rosiglitazone and ciglitazone, two other agonists of PPARgamma, did not synergize with PDB to induce DNA synthesis, suggesting that activation of PPARgamma is not involved in 15dPGJ(2)-induced DNA synthesis. 15dPGJ(2) neither increased the levels of cAMP, nor changed the phosphorylation state of CREB, nor induced calcium mobilization, indicating that 15dPGJ(2) effects are independent of prostaglandin D(2) receptor (DP1 and DP2). Moreover, 15dPGJ(2) did not induce activation of PKB/AKT or activation of extracellular signal-regulated kinase (ERK). These results establish a proliferative role for 15dPGJ(2) in Swiss 3T3 cells independent of the activation of PPARgamma or the PGD(2) receptors.  相似文献   

3.
The activation of leukocytes by lipopolysaccharides (LPS), resulting in the oxidative burst, contributes to the pathogenesis of septic shock. The binding of LPS to L-selectin, which was reported as a serum-independent LPS receptor on neutrophils, induces the production of oxygen free radicals. Human lactoferrin (hLf), an anti-inflammatory glycoprotein released from neutrophil granules during infection, binds to LPS. In this study, we investigated the capacity of hLf to inhibit the L-selectin-mediated activation of neutrophils. Our experiments revealed that hLf prevents the binding of LPS to L-selectin in a concentration-dependent manner. Inhibition was maximum (87.7+/-0.5%) at a concentration of 50 microg/ml of hLf. Furthermore, hLf inhibited up to 55.4+/-0.5% of the intracellular hydrogen peroxide production induced by LPS in neutrophils. These findings suggest that the anti-inflammatory properties of hLf are due, at least in part, to their ability to prevent the binding of LPS to neutrophil L-selectin.  相似文献   

4.
5.
The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE(2), PGA(2), PGD(2), PGJ(2) and 15dPGJ(2) each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD(2) and its metabolites PGJ(2) and 15dPGJ(2). Down-regulation was most rapid with the end-product 15dPGJ(2) and was accompanied by a marked reduction in CXCR4 mRNA. 15dPGJ(2) is known to be a ligand for the nuclear receptor PPARgamma. Down-regulation of CXCR4 was also observed with the PPARgamma agonist rosiglitazone, while 15dPGJ(2)-induced CXCR4 down-regulation was substantially diminished by the PPARgamma antagonists GW9662 and T0070907. These data support the involvement of PPARgamma. However, the 15dPGJ(2) analogue CAY10410, which can act on PPARgamma but which lacks the intrinsic cyclopentenone structure found in 15dPGJ(2), down-regulated CXCR4 substantially less potently than 15dPGJ(2). The cyclopentenone grouping is known to inhibit the activity of NFkappaB. Consistent with an additional role for NFkappaB, we found that the cyclopentenone prostaglandin PGA(2) and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NFkappaB p50 and that 15dPGJ(2) interfered with this p50 nuclear localization. These data suggest that 15dPGJ(2) can down-regulate CXCR4 on cancer cells through both PPARgamma and NFkappaB. 15dPGJ(2), present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.  相似文献   

6.
7.
Tumor necrosis factor (TNF) is a 17,000-Da protein which is produced by mononuclear cells upon exposure to endotoxin. Increases in adherence, phagocytosis, hydrogen peroxide release, and lysozyme secretion have been demonstrated after prolonged incubation of human neutrophils with TNF. In this study, the ability of highly purified recombinant human TNF to modulate neutrophil responses to soluble stimuli was evaluated. Tumor necrosis factor alone (0.1 to 10,000 units/ml) failed to induce neutrophil superoxide anion (O2-) production, granule release, or aggregation when incubated for up to 25 min at 37 degrees C. TNF did, however, stimulate a significant time-, dose-, and temperature-dependent increase in neutrophil F-actin content. Although exposure of neutrophils to TNF alone caused no superoxide anion production, it enhanced the O2- production in response to the chemotactic peptide, f-methionyl-leucyl-phenylalanine (FMLP) or the tumor promotor, phorbol myristate acetate, by as much as 278%. The enhancement was time-, dose-, and temperature-dependent and was due to a more rapid initial rate of O2- production. The TNF enhancement of FMLP-induced O2- production was blocked when an anti-TNF monoclonal antibody 241-1H11, is present during the preincubation period. TNF preincubation also enhanced FMLP-induced lysozyme release, but had no effect on aggregation and actin polymerization by FMLP. The kinetics of NADPH oxidase activation by arachidonic acid was unaltered by TNF. These results indicate that brief exposures to recombinant human TNF are able to enhance or prime the neutrophil oxidative burst in response to a second stimulus.  相似文献   

8.
The expression and function of prostaglandin (PG) E(2) receptors were examined in mouse neutrophils exudated into the peritoneal cavity by casein treatment. Expressions of the EP2 and EP4 receptors were detected in neutrophils by Northern blot, but those of EP1 and EP3 receptors were not detected by RT-PCR. EP2-selective agonist, ONO-AE1-259, and EP4-selective agonist, ONO-AE1-329, stimulated cAMP formation in the cells. PGE(2) affected the TNF-alpha and IL-6 production in lipopolysaccharide (LPS)-treated neutrophils; it suppressed the TNF-alpha production and enhanced the IL-6 production. The PGE(2) effects were mimicked by dibutyryl cAMP. This is the first study of the enhancement of IL-6 production by cAMP-elevating reagents in neutrophils. Using neutrophils from EP2- and EP4-deficient mice in combination with EP2- and EP4-selective agonists, it was found that the augmentation of IL-6 was mediated mainly by the EP2 receptor and the suppression of TNF-alpha by the EP4 receptor and partially by the EP2 receptor. These findings indicate that casein-induced peritoneal neutrophils express Gs-coupled PGE(2) receptors, EP2 and EP4, which might differentially regulate the LPS-induced production of TNF-alpha and IL-6.  相似文献   

9.
Tyramine (TA), a biogenic amine, attenuates intracellular cAMP production by acting on its receptor in insects. Several non-biogenic amines were examined for their actions on native and heterologously expressed silkworm TA receptors. 5-(4-Hydroxyphenyl)oxazole, which showed an attenuating effect on cAMP production in silkworm-head membranes, did not attenuate forskolin-stimulated cAMP production in HEK-293 cells expressing the silkworm TA receptor, although the compound bound to the cloned receptor. 2-Phenylethylamines (2-PEAs), which showed positive and negative effects on cAMP production in silkworm-head membranes, inhibited [3H]TA binding to the cloned TA receptor. 2-Chloro-2-(4-chlorophenyl)ethylamine was the most potent inhibitor of [3H]TA binding among the 2-PEAs tested, with an IC50 of 30.4 nM. This compound acted as an antagonist and abolished TA-attenuation of forskolin-stimulated cAMP production in the cloned TA receptor. The discrepancy in the effects of the non-biogenic amines on the native and cloned TA receptors remains to be further examined. A newly synthesized 2-PEA, 2-chloro-2-(4-hydroxyphenyl)ethylamine, attenuated forskolin-stimulated cAMP production in the cloned TA receptor, indicating that the para-hydroxy group is important for the agonist action.  相似文献   

10.
Group B streptococci (GBS) are a major cause of meningitis and septicemia in neonates and numerous invasive diseases in adults. Host defense against GBS infections relies upon phagocytosis and killing by phagocytic cells. To better understand the importance of this defense mechanism a flow cytometric assay was developed to study phagocytosis and oxidative burst of leukocytes stimulated by bacteria. GBS labeled with fluorescein isothiocyanate were used for phagocytosis experiments and the extracellular fluorescence was quenched by ethidium bromide to differentiate intracellular from extracellular bacteria. The intracellular oxidative burst was determined by using 2',7'-dichlorofluorescein diacetate to measure hydrogen peroxide production and hydroethidine for superoxide anion production. We found that for GBS serotypes Ia, Ib/c, II, and III phagocytosis was greater in neutrophils than monocytes. Hydrogen peroxide production and superoxide anion production were also greater for neutrophils than monocytes in all serotypes tested. A comparison of seven type III strains revealed greater phagocytosis and superoxide anion production by neutrophils than monocytes but no difference in hydrogen peroxide production. Therefore, monocytes react similarly as neutrophils in response to GBS but at a reduced level. This methodology of measuring both phagocytosis of GBS and oxidative burst simultaneously in neutrophils and monocytes should be very useful in further studies on the importance of factors such as complement and IgG receptors for the killing of bacteria.  相似文献   

11.
Many inflammatory mediators retard granulocyte apoptosis. Most natural PGs studied herein (e.g., PGE(2), PGA(2), PGA(1), PGF(2 alpha)) either delayed apoptosis or had no effect, whereas PGD(2) and its metabolite PGJ(2) selectively induced eosinophil, but not neutrophil apoptosis. This novel proapoptotic effect does not appear to be mediated via classical PG receptor ligation or by elevation of intracellular cAMP or Ca(2+). Intriguingly, the sequential metabolites Delta(12)PGJ(2) and 15-deoxy-Delta(12,) Delta(14)-PGJ(2) (15dPGJ(2)) induced caspase-dependent apoptosis in both granulocytes, an effect that did not involve de novo protein synthesis. Despite the fact that Delta(12)PGJ(2) and 15dPGJ(2) are peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activators, apoptosis was not mimicked by synthetic PPAR-gamma and PPAR-alpha ligands or blocked by an irreversible PPAR-gamma antagonist. Furthermore, Delta(12)PGJ(2) and 15dPGJ(2) inhibited LPS-induced I kappa B alpha degradation and subsequent inhibition of neutrophil apoptosis, suggesting that apoptosis is mediated via PPAR-gamma-independent inhibition of NF-kappa B activation. In addition, we show that TNF-alpha-mediated loss of cytoplasmic I kappa B alpha in eosinophils is inhibited by 15dPGJ(2) in a concentration-dependent manner. The selective induction of eosinophil apoptosis by PGD(2) and PGJ(2) may help define novel therapeutic pathways in diseases in which it would be desirable to specifically remove eosinophils but retain neutrophils for antibacterial host defense. The powerful proapoptotic effects of Delta(12)PGJ(2) and 15dPGJ(2) in both granulocyte types suggest that these natural products control the longevity of key inflammatory cells and may be relevant to understanding the control and resolution of inflammation.  相似文献   

12.
《The Journal of cell biology》1990,111(5):2171-2181
The ability of neutrophils (PMN) to undergo a prolonged respiratory burst in response to cytokines such as tumor necrosis factor-alpha (TNF) depends on expression of CD11/CD18 (beta 2) integrins and interaction with matrix protein-coated surfaces (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. D. Wright. 1989. J. Cell Biol. 109:1341-1349). We tested the hypothesis that changes in cAMP mediate the joint action of cytokines and integrins. When plated on FBS- or fibrinogen-coated surfaces, PMN responded to TNF with a sustained fall in intracellular cAMP. This did not occur without TNF; in suspended PMN; in PMN treated with anti-CD18 mAb; or in PMN genetically deficient in beta 2 integrins. A preceding fall in cAMP appeared essential for TNF to induce a respiratory burst, because drugs that elevate cAMP blocked the burst if added any time before, but not after, its onset. Adenosine analogues and cytochalasins also block the TNF-induced respiratory burst if added before, but not after, its onset. Both also blocked the TNF-induced fall in cAMP. The effect of cytochalasins led us to examine the relationship between cAMP and actin reorganization. The same conditions that led to a sustained fall in cAMP led at the same time to cell spreading and the assembly of actin filaments. As with the respiratory burst, cAMP-elevating agents inhibited TNF-induced cell spreading and actin filament assembly if added before, but not after, spreading began. Thus, occupation of TNF receptors and engagement of CD18 integrins interact synergistically in PMN to promote a fall in cAMP. The fall in cAMP is closely related to cell spreading and actin reorganization. These changes are necessary for TNF to induce a prolonged respiratory burst. We conclude that integrins can act jointly with cytokines to affect cell shape and function through alterations in the level of a second messenger, cAMP.  相似文献   

13.
Since 15-deoxy-delta(12,14)-prostaglandin J(2) (15dPGJ(2)) has been identified as an endogenous ligand of PPARgamma thus inducing adipogenesis, it has been reported to play active parts in numerous cellular regulatory mechanisms. As 15dPGJ(2) has been shown to covalently bind several peptides and proteins, we investigated whether it also covalently binds PPARgamma. We first observed that after incubation of 15dPGJ(2) with recombinant PPARgamma, the quantity of free 15dPGJ(2) measured was always lower than the initial amount. We then measured the ability of the labeled agonist rosiglitazone to displace the complex PPARgamma(2)/15dPGJ(2) obtained after pre-incubation. We observed that the binding of rosiglitazone was dependent on the initial concentration of 15dPGJ(2). Finally using MALDI-TOF mass spectrometry analysis, after trypsinolysis of an incubate of the PPARgamma(2) ligand binding domain (GST-LBD) with 15dPGJ2, we found a fragment (m/z = 1314.699) corresponding to the addition of 15dPGJ(2) (m/z = 316.203) to the GST-LBD peptide (m/z = 998.481). All these observations demonstrate the existence of a covalent binding of 15dPGJ(2) to PPARgamma, which opens up new perspectives to study the molecular basis for selective activities of PPARs.  相似文献   

14.
Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptosis that is inhibited by antibody to the beta2 integrin, Mac-1, and requires NADPH oxidase-derived reactive oxygen species (ROS) generated during phagocytosis. Here we report that phagocytosis-induced cell death (PICD) does not occur in Mac-1-deficient murine neutrophils, suggesting that PICD proceeds through a bona fide Mac-1-dependent pathway. A sustained, intracellular oxidative burst is associated with PICD. Furthermore, PICD does not require traditional death receptors, Fas, or tumor necrosis factor (TNF) receptor. TNF but not Fas synergizes with phagocytosis to enhance significantly PICD by increasing the oxidative burst, and this is Mac-1-dependent. Phagocytosis-induced ROS promote cleavage/activation of caspases 8 and 3, key players in most extrinsic ("death receptor") mediated pathways of apoptosis, and caspases 8 and 3 but not caspase 9/mitochondria, are required for PICD. This suggests that ROS target the extrinsic versus the intrinsic ("stress stimulus") apoptotic pathway. Phagocytosis also triggers a competing MAPK/ERK-dependent survival pathway that provides resistance to PICD likely by down-regulating caspase 8 activation. The anti-apoptotic factor granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly enhances ROS generation associated with phagocytosis. Despite this, it completely suppresses PICD by sustaining ERK activation and inhibiting caspase 8 activation in phagocytosing neutrophils. Together, these studies suggest that Mac-1-mediated phagocytosis promotes apoptosis through a caspase 8/3-dependent pathway that is modulated by NADPH oxidase-generated ROS and MAPK/ERK. Moreover, TNF and GM-CSF, likely encountered by phagocytosing neutrophils at inflammatory sites, exploit pro-(ROS) and anti-apoptotic (ERK) signals triggered by phagocytosis to promote or suppress PICD, respectively, and thus modulate the fate of phagocytosing neutrophils.  相似文献   

15.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

16.
Desensitization of macrophages is important during the development of sepsis. It was our intention to identify mechanisms that promote macrophage deactivation upon contact with endotoxin (LPS) and interferon-gamma (IFN-gamma) in vitro. Macrophage activation was achieved with 12-O-tetradecanoylphorbol 13-acetate (TPA), and the oxidative burst (i.e., oxygen radical formation) was followed by oxidation of the redox-sensitive dyes hydroethidine and dichlorodihydrofluorescein diacetate. Prestimulation of macrophages for 15 h with a combination of LPS/IFN-gamma attenuated oxygen radical formation in response to TPA. Taking the anti-inflammatory properties of the peroxisome proliferator-activating receptorgamma (PPARgamma) into consideration, we established activation of PPARgamma in response to LPS/IFN-gamma by an electrophoretic mobility shift, supershift, and a reporter gene assay. The reporter contains a triple PPAR-responsive element (PPRE) in front of a thymidine kinase minimal promoter driving the luciferase gene. We demonstrated that PPRE decoy oligonucleotides, supplied in front of LPS/IFN-gamma, allowed a full oxidative burst to recover upon TPA addition. Furthermore, we suppressed the oxidative burst by using the PPARgamma agonists 15-deoxy-Delta12,14-prostaglandin J2, BRL 49653, or ciglitazone. No effect was observed with WY 14643, a PPARalpha agonist. We conclude that activation of PPARs, most likely PPARgamma, promotes macrophage desensitization, thus attenuating the oxidative burst. This process appears important during development of sepsis.  相似文献   

17.
Pretreatment with recombinant human granulocyte CSF (G-CSF) protected mice in two different models of septic shock. Intravenous injection of 250 micrograms/kg G-CSF to mice prevented lethality induced by 5 mg/kg LPS. Injection of 50 micrograms/kg G-CSF protected galactosamine-sensitized mice against LPS-induced hepatitis. In either case, this protection was accompanied by a suppression of LPS-induced serum TNF activity. In contrast, when galactosamine-sensitized mice were pretreated with 50 micrograms/kg murine recombinant granulocyte/macrophage CSF instead of G-CSF and subsequently challenged with LPS, serum TNF activity was significantly enhanced and mortality was increased. The suppressive effect of G-CSF on LPS-induced TNF production was also demonstrated in rats. In vivo, no TNF was detectable in the blood of LPS-treated rats, which had been pretreated with G-CSF. Ex vivo, alveolar macrophages, bone marrow macrophages, Kupffer cells, or peritoneal macrophages prepared from G-CSF-treated rats produced significantly less TNF upon stimulation with LPS than corresponding populations from control rats. However, when these macrophage populations were incubated with G-CSF in vitro, LPS-induced TNF production was unaffected. These data suggest that the G-CSF-mediated suppression of TNF production is not a direct effect of G-CSF on macrophages. To examine whether, independent of the protection against LPS, G-CSF treatment still activated neutrophils, it was demonstrated that granulocytes from G-CSF-treated rats were primed for PMA-induced oxidative burst and for ionophore/arachidonic acid-stimulated lipoxygenase product formation. The experiments of this study support the notion that G-CSF is a negative feedback signal for macrophage-derived TNF-alpha production during Gram-negative sepsis.  相似文献   

18.
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists cause cell death in several types of cancer cells. The aim of this study was to examine the effects of two PPARgamma agonists, ciglitazone and 15-deoxy-delta(12,14)-prostaglandin J2 (15dPGJ2), on the survival of thyroid carcinoma CGTH W-2 cells. Both ciglitazone and 15dPGJ2 decreased cell viability in a time- and dose-dependent manner. Cell death was mainly due to apoptosis, with a minor contribution from necrosis. Increased levels of active caspase 3, cleaved poly (ADP-ribose) polymerase (PARP), and cytosolic cytochrome-c were noted. In addition, ciglitazone and 15dPGJ2 induced detachment of CGTH W-2 cells from the culture substratum. Both the protein levels and immunostaining signals of focal adhesion (FA) proteins, including vinculin, integrin beta1, focal adhesion kinase (FAK), and paxillin were decreased after PPARgamma agonist treatment. Meanwhile, reduced phosphorylation of FAK and paxillin was noted. Furthermore, PPARgamma agonists induced expression of protein tyrosine phosphatase-PEST (PTP-PEST), and of phosphatase and tensin homologue deleted on chromosome ten (PTEN). The upregulation of these phosphatases might contribute to the dephosphorylation of FAK and paxillin, since pre-treatment with orthovanadate prevented PPARgamma agonist-induced dephosphorylation of FAK and paxillin. Perturbation of CGTH W-2 cells with anti-integrin beta1 antibodies induced FA disruption and apoptosis in the same cells, thus the downregulation of integrin beta1 by PPARgamma agonists resulted in FA disassembly and might induce apoptosis via anoikis. Our results suggested the presence of crosstalk between apoptosis and integrin-FA signaling. Moreover, upregulation and activation of PTEN was correlated with reduced phosphorylation of Akt, and this consequence disfavored cell survival. In conclusion, PPARgamma agonists induced apoptosis of thyroid carcinoma cells via the cytochrome-c caspase 3 and PTEN-Akt pathways, and induced necrosis via the PARP pathway.  相似文献   

19.
Endogenous expression of the corticotropin-releasing factor type 2a receptor [CRF2(a)] but not CRF2(b) and CRF2(c) was observed in higher passage cultures of human Y79 retinoblastoma cells. Functional studies further demonstrated an increase in CRF2(a) mRNA and protein levels with higher passage numbers (> 20 passages). Although the CRF1 receptor was expressed at higher levels than the CRF2(a) receptor, both receptors were easily distinguishable from one another by selective receptor ligands. CRF(1)-preferring or non-selective agonists such as CRF, urocortin 1 (UCN1), and sauvagine stimulated cAMP production in Y79 to maximal responses of approximately 100 pmoles/10(5) cells, whereas the exclusive CRF2 receptor-selective agonists UCN2 and 3 stimulated cAMP production to maximal responses of approximately 25-30 pmoles/10(5) cells. UCN2 and 3-mediated cAMP stimulation was potently blocked by the approximately 300-fold selective CRF2 antagonist antisauvagine (IC50 = 6.5 +/- 1.6 nmol/L), whereas the CRF(1)-selective antagonist NBI27914 only blocked cAMP responses at concentrations > 10 microL. When the CRF(1)-preferring agonist ovine CRF was used to activate cAMP signaling, NBI27914 (IC50 = 38.4 +/- 3.6 nmol/L) was a more potent inhibitor than antisauvagine (IC50 = 2.04 +/- 0.2 microL). Finally, UCN2 and 3 treatment potently and rapidly desensitized the CRF2 receptor responses in Y79 cells. These data demonstrate that Y79 cells express functional CRF1 and CRF2a receptors and that the CRF2(a) receptor protein is up-regulated during prolonged culture.  相似文献   

20.
A series of novel 3,4,5,6-tetrahydro-1H-azepino[4,3,2-cd]indoles was synthesized and tested for vasopressin receptor antagonist activity. We identified compounds with high affinity for the human V2 receptor and good selectivity over the human V1a receptor. Compound 6c bound to V2 receptors with an IC(50) value of 20 nM, had >100-fold selectivity over V1a receptors, and inhibited cAMP formation in a cellular V2 functional assay with an IC(50) value of 70 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号