首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Ex vivo ?(13)C, (2)H? NMR spectroscopy allowed to estimate the relative sizes of neuronal and glial glutamate pools and the relative contributions of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate to the neuronal and glial tricarboxylic acid cycles of the adult rat brain. Rats were infused during 60 min in the right jugular vein with solutions containing (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose or (2-(13)C, 2-(2)H(3)) acetate only. At the end of the infusion the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by high resolution (13)C NMR spectroscopy (90.5 MHz). The relative sizes of the neuronal and glial glutamate pools and the contributions of acetyl-CoA molecules derived from (2-(13)C, (2)H(3)) acetate or (1-(13)C) glucose entering the tricarboxylic acid cycles of both compartments, could be determined by the analysis of (2)H-(13)C multiplets and (2)H induced isotopic shifts observed in the C4 carbon resonances of glutamate and glutamine. During the infusions with (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose, the glial glutamate pool contributed 9% of total cerebral glutamate being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (4%), (2-(13)C) acetyl-CoA (3%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (2%). The neuronal glutamate pool accounted for 91% of the total cerebral glutamate being mainly originated from (2-(13)C) acetyl-CoA (86%) and (2-(13)C, 2-(2)H) acetyl-CoA (5%). During the infusions of (2-(13)C, 2-(2)H(3)) acetate only, the glial glutamate pool contributed 73% of the cerebral glutamate, being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (36%), (2-(13)C, 2-(2)H) acetyl-CoA (27%) and (2-(13)C) acetyl-CoA (10%). The neuronal pool contributed 27% of cerebral glutamate being formed from (2-(13)C) acetyl-CoA (11%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (16%). These results illustrate the potential of ?(13)C, (2)H? NMR spectroscopy as a novel approach to investigate substrate selection and metabolic compartmentation in the adult mammalian brain.  相似文献   

2.
The [3.3.1]-bicyclic amine, exo-8-benzyloxymethyl-3-ethoxycarbonyl-4-hydroxy-1-azabicyclo[3.3.1]non-3-ene (1), has been shown to be a potent competitive antagonist against the hM(1)-hM(5) muscarinic receptors. This heterocyclic system has not been extensively evaluated despite the notable activities reported for other bicyclic amines. Synthetic strategies permitted the selective alteration of five structural sites in 1. Pharmacological evaluation demonstrated that modification of either the C(3) alkoxycarbonyl or the C(4) enol units in 1 gave compounds with high affinity for the hM(1)-hM(5) muscarinic receptors with selectivity for the hM(2) receptor.  相似文献   

3.
The in vitro hydrolytic degradation of hydroxyl-functionalized poly(alpha-hydroxy acid)s was investigated. Benzyl-ether-protected hydroxyl-functionalized dilactones (S)-3-benzyloxymethyl-(S)-6-methyl-1,4-dioxane-2,5-dione (1a) and (S)-3-benzyloxymethyl-1,4-dioxane-2,5-dione (1b) were copolymerized in a melt with various amounts of L-lactide using benzyl alcohol and SnOct2 as the initiator and catalyst, respectively. The benzyl groups were removed by hydrogenation to yield polyesters with hydroxyl functional groups, poly(lactic acid-co-hydroxymethyl glycolic acid) and poly(lactic acid-co-glycolic acid-co-hydroxymethyl glycolic acid) (2a and 2b). Degradation of the hydroxyl-functionalized polyesters and poly(lactic-co-glycolic acid) (50/50) was studied by incubation of pellets of these polymers in phosphate buffer (174 mM, pH 7.4) at 37 degrees C. Polymer degradation was monitored by mass-loss measurements and by gel permeation chromatography, differential scanning calorimetry, and 1H NMR analysis. The degradation times ranging from less than 1 day (for the homopolymer of 2a) to 2 months (copolymer of 25% 2a and 75% lactide) were found. The degradation rates increased with increasing hydroxyl density of the polymers, which was associated with a switch from bulk to surface erosion. NMR and thermal analysis showed that the moieties with the hydroxyl groups were preferentially removed from the degrading polymer. In conclusion, this study shows that the degradation rate of polyesters containing 2a and 2b can be tailored from a few days to 2 months, making them very suitable for biomedical and pharmaceutical applications.  相似文献   

4.
Jiang J  Li Y  Chen Z  Min Z  Lou F 《Steroids》2006,71(13-14):1073-1077
Two novel C29-5beta-sterols, opuntisterol [(24R)-24-ethyl-5beta-cholest-9-ene-6beta,12alpha-diol] (1) and opuntisteroside [(24R)-24-ethyl-6beta-[(beta-d-glucopyranosyl)oxy]-5beta-cholest-9-ene-12alpha-ol] (2), together with nine known compounds, beta-sitosterol (3), taraxerol (4), friedelin (5), methyl linoleate (6), 7-oxositosterol (7), 6beta-hydroxystigmast-4-ene-3-one (8), daucosterol (9), methyl eucomate (10) and eucomic acid (11), were isolated from the stems of Opuntia dillenii collected in Guizhou Province, China. Their structures were elucidated mainly by spectroscopic analysis. The absolute configuration of 1 were deduced from comparative 1H NMR data of the (S)- and (R)-methoxyphenyl acetate derivatives. Compounds 6-8, 10 and 11 were isolated from O. dillenii for the first time.  相似文献   

5.
Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that dextran sodium sulfate (DSS) treatment promotes the recruitment of F4/80(+)CD11b(+)CCR2(+)Ly6C(high) inflammatory monocytes into the colon. F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6C(high) intestinal inflammatory macrophages revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4, Cxcl2, Arg1, Chi3l3, Ccl11, and Il10, respectively. Attenuation of DSS-induced F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocyte recruitment to the colon in CCR2(-/-) mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation, and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6C(high)CCR2(+) inflammatory monocyte/macrophage-derived CCL11.  相似文献   

6.
Complement receptors on lymphocytes were first described more than 12 yr ago (1-3) and have come to be used as a common marker for the identification of B cells (4). The function of these receptors on the lymphocyte and their possible role in induction and/or regulation of the immune response remain unclear. In particular, there continues to be controversy as to whether native C3 can bind to the C3b receptor of these cells without cleavage to C3b (5-10). The resolution of this question is critical in order to clarify the expected state of availability of the receptor in vivo, because in plasma, the C3 concentration is relatively high (1.1 to 1.5 mg/ml), whereas there is little or no circulating C3b due to efficient degradation by factor H and the C3-inactivator (11). With the recent development of an improved method for the isolation of C3 from human plasma, it has been possible to obtain biochemically and functionally pure C3 that has not undergone structural or conformational alteration during processing and fully retains the specific hemolytic activity of C3 in fresh serum (12). Berger et al. (13) were able to demonstrate that C3 prepared in this way failed to bind to the C3b receptor of human polymorphonuclear leukocytes or erythrocytes. Similar observations were made by Schreiber et al. (14), also with phagocytic cells and erythrocytes, and by Dixit et al. (15) with an isolated membrane receptor preparation from rabbit macrophages. In the present communication, we extend these observations to human peripheral blood B lymphocytes. Purified C3 in its native state fails to block B lymphocyte-EA (IgM) C4b3b rosettes, whereas C3b causes 50% inhibition at 5 to 6 micrograms/ml. Furthermore, C3 failed to alter polyclonal immunoglobulin (Ig) production by human B cells, whereas C3b inhibited this B cell function. These data suggest that native C3 does not bind to the C3b receptors of B lymphocytes, and thus they are not occupied under normal conditions in vivo.  相似文献   

7.
D3 receptor radioligands (E)-4,3,2-[11C]methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides (4-[11C]MMC, [11C]1a; 3-[11C]MMC, [11C]1b; and 2-[11C]MMC, [11C]1c) were synthesized for evaluation as novel potential positron emission tomography (PET) imaging agents for brain D3 receptors. The new tracers 4,3,2-[11C]MMCs were prepared by O-[11C]methylation of corresponding precursors (E)-4,3,2-hydroxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides (4,3,2-HMCs) using [11C]methyl triflate and isolated by the solid-phase extraction (SPE) purification procedure with 40-65% radiochemical yields, decay corrected to end of bombardment (EOB), and a synthesis time of 15-20 min. The PET dynamic studies of the tracers [11C]1a-c in rats were performed using an animal PET scanner, IndyPET-II, developed in our laboratory. The results show that the brain uptake sequence was 4-[11C]MMC > 3-[11C]MMC > 2-[11C]MMC, which is consistent with their in vitro biological properties. The initial PET blocking studies of the tracers 4,3,2-[11C]MMCs with corresponding pretreatment drugs (E)-4,3,2-methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides (4,3,2-MMCs, 1a-c) had no effect on 4,3,2-[11C]MMCs-PET rat brain imaging. These results suggest that the localization of 4,3,2-[11C]MMCs in rat brain is mediated by nonspecific processes, and the visualization of 4,3,2-[11C]MMCs-PET in rat brain is related to nonspecific binding.  相似文献   

8.
Synthesis of "reversed" methylenecyclopropane analogues of nucleoside phosphonates 6a,7a, 6b, and 7b is described. 1-Bromo-1-bromomethylcyclopropane 8 was converted to the bromocyclopropyl phosphonate 9 by Michaelis-Arbuzov reaction with triisopropyl phosphite. Base-catalyzed beta-elimination and deacetylation gave the key Z- and E-hydroxymethylcyclopropyl phosphonates 10 and 11 separated by chromatography. The Mitsunobu type of alkylation of 10 or 11 with adenine or 2-amino-6-chloropurine afforded phosphonates 12a, 12b, 13a, and 13b. Acid hydrolysis furnished the adenine and guanine analogues 6a, 7a, 6b, and 7b. The E and Z configuration was assigned on the basis of NOE experiments with phosphonates 6b and 7b. All Z- and E-isomers were also distinguished by different chemical shifts of CH2O or CH2N (H4 or H4'). Significant differences of the chemical shifts of the cyclopropane C3(3') carbons and coupling constants 3JP,C2(2') or 3JP,C3(3') selective for the Z- or E-isomers were also noted. Phosphonates 6a, 7a, 6b, and 7b are devoid of significant antiviral activity.  相似文献   

9.
The labelling synthesis of ethyl nitro[2-(11)C]acetate, a synthetic intermediate feasible for (11)C-labelled PET tracers, by C-carboxylation of [(11)C]MeNO(2) with 1-ethoxycarbonylbenzotriazole, and its simple application are presented.  相似文献   

10.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

11.
Decay-accelerating factor (DAF) is a membrane glycoprotein found on various cells that are in contact with complement. It inhibits the formation of the C3 convertases of the complement system, both the classic (C4b2a) and alternative (C3bBb) pathways. In this investigation, we used a homobifunctional cross-linking reagent to search for a DAF ligand on the surface of cells subjected to complement attack. We found that DAF forms complexes with C4b and C3b deposited on the same erythrocytes, but not with the physiologic degradation products of these complement fragments, that is, C4d or C3dg. Taken together with prior observations that DAF action is reversible, and DAF does not affect the structure of C4b or C3b, these findings suggest that DAF functions by competitively inhibiting the uptake of C2 or factor B, and preventing the assembly of the C3 convertases.  相似文献   

12.
Human C4b-binding protein (C4bp) facilitates the factor I-mediated proteolytic cleavage of the active forms of complement effectors C3b and C4b into their inactive forms. C4bp comprises a disulfide-linked heptamer of alpha-chains with complement (C) regulatory activity and a beta-chain. Each alpha-chain contains 8 short consensus repeat (SCR) domains. Using SCR-deletion mutants of recombinant multimeric C4bp, we identified the domains responsible for the C3b/C4b-binding and C3b/C4b-inactivating cofactor activity. The C4bp mutant with deletion of SCR2 lost the C4b-binding ability, as judged on C3b/C4b-Sepharose binding assaying and ELISA. In contrast, the essential domains for C3b-binding extended more to the C-terminus, exceeding SCR4. Using fluid phase cofactor assaying and deletion mutants of C4bp, SCR2 and 3 were found to be indispensable for C4b cleavage by factor I, and SCR1 contributed to full expression of the factor I-mediated C4b cleaving activity. On the other hand, SCR1, 2, 3, 4, and 5 participated in the factor I-cofactor activity for C3b cleavage, and SCR2, 3, and 4 were absolutely required for C3b inactivation. Thus, different sets of SCRs participate in C3b and C4b inactivation, and the domain repertoire supporting C3b cofactor activity is broader than that supporting C4b inactivation by C4bp and factor I. Furthermore, the domains participating in C3b/C4b binding are not always identical to those responsible for cofactor activity. The necessity of the wide range of SCRs in C3b inactivation compared to C4b inactivation by C4bp and factor I may reflect the physiological properties of C4bp, which is mainly directed to C4b rather than C3b.  相似文献   

13.
Treatment of enol acetates of 3beta-acetoxyandrost-5-en-17-one and its 5alpha-reduced analog, 5alpha-androstan-17-one, and estrone acetate, 1-4, with Pb(OCOCH(3))(4) in acetic acid and acetic anhydride gave the previously unreported products, 16beta-(acetoxy)acetoxy-17-ketones 8-10 and 12, in 9-15% yields along with the known major products, 16beta-acetoxy-17-ketones 5-7 and 11. Similar treatment of the 16beta-acetoxy-17-ketones with the lead reagent did not yield the corresponding (acetoxy)acetates. Reaction of the enol acetate 3 with Pb(OCOCD(3))(4) in CD(3)COOD yielded principally the labeled (acetoxy)acetate 10-d(3), which had a CD(3)COOCH(2)COO moiety at C-16beta. In contrast, when the deuterated enol acetate 3-d(3), which was obtained by treatment of the 17-ketone 14 with (CD(3)CO)(2)O in the presence of LDA and which had a CD(3)COO moiety at C-17, was reacted with Pb(OCOCH(3))(4), the resulting product was the labeled compound 10-d(2). This product had a CH(3)COOCD(2)COO function at C-16beta. Based on these results, along with further isotope-labeling experiments, it seems likely that the (acetoxy)acetate is produced through a lead (IV) acetate-catalyzed migration of the 17-acetyl function of the enol acetate to the C-16beta-position followed by attack of an acetoxy anion of the lead reagent.  相似文献   

14.
C4b and C3b deposited on host cells undergo limited proteolytic cleavage by regulatory proteins. Membrane cofactor protein (MCP; CD46), factor H, and C4b binding protein mediate this reaction, known as cofactor activity, that also requires the plasma serine protease factor I. To explore the roles of the fluid phase regulators vs those expressed on host cells, a model system was used examining complement fragments deposited on cells transfected with human MCP as assessed by FACS and Western blotting. Following incubation with Ab and complement on MCP(+) cells, C4b was progressively cleaved over the first hour to C4d and C4c. There was no detectable cleavage of C4b on MCP(-) cells, indicating that MCP (and not C4BP in the serum) primarily mediates this cofactor activity. C3b deposition was not blocked on MCP(+) cells because classical pathway activation occurred before substantial C4b cleavage. Cleavage, though, of deposited C3b was rapid (<5 min) and iC3b was the dominant fragment on MCP(-) and MCP(+) cells. Studies using a function-blocking mAb further established factor H as the responsible cofactor. If the level of Ab sensitization was reduced 8-fold or if Mg(2+)-EGTA was used to block the classical pathway, MCP efficiently inhibited C3b deposition mediated by the alternative pathway. Thus, for the classical pathway, MCP is the cofactor for C4b cleavage and factor H for C3b cleavage. However, if the alternative pathway mediates C3b deposition, then MCP's cofactor activity is sufficient to restrict complement activation.  相似文献   

15.
The crystal structures of 13-ethyl-gona-1(10)-ene-11alpha,17beta-diacetate (3b) and 13-ethyl-10alpha-gona-4-ene-11alpha,17beta-diacetate (5b), two steroidal monoenes obtained as minor products from the reduction, then acetylation, of the aromatic A ring of 13-ethyl-3-ethoxy-gona-1,3,5(10)-triene-11alpha,17beta-diol (1), were determined by X-ray diffraction. The conformations of the rings A, B, C, and D and the unusual stereochemistry at C-10 of the 10alpha-gona-4-ene (5b) are discussed.  相似文献   

16.
From the reaction of 1-methylimidazole (1a), 4,5-dichloro-1H-imidazole (1b(I)) and 1-methylbenzimidazole (1c) with p-cyanobenzyl bromide (2a), non-symmetrically substituted N-heterocyclic carbene (NHC) [(3a-c)] precursors, 5,6-dimethyl-1H-benzimidazole (1d) and 4,5-diphenyl-1H-imidazole (1e) with p-cyanobenzyl bromide (2a) and benzyl bromide (2b), symmetrically substituted N-heterocyclic carbene (NHC) [(3d-f)] precursors were synthesised. These NHC-precursors were then reacted with silver(i) acetate to yield the NHC-silver complexes (1-methyl-3-(4-cyanobenzyl)imidazole-2-ylidene)silver(i)acetate (4a), (4,5-dichloro-1-(4-cyanobenzyl)-3-methyl)imidazole-2-ylidene)silver(i)acetate (4b), (1-methyl-3-(4-cyanobenzyl)benzimidazole-2-ylidene)silver(i)acetate (4c), (1,3-bis(4-cyanobenzyl)5,6-dimethylbenzimidazole-2-ylidene) silver(i) acetate (4d), (1,3-dibenzyl-5,6-dimethylbenzimidazole-2-ylidene) silver(i) acetate (4e) and (1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene) silver(i) acetate (4f) respectively. Three NHC-precursors 3c-e and four NHC-silver complexes 4b and 4d-f were characterised by single crystal X-ray diffraction. Preliminary in vitro antibacterial activity of the NHC-precursors and NHC-silver complexes was investigated against Gram-positive bacteria Staphylococcus aureus, and Gram-negative bacteria Escherichia coli using the qualitative Kirby-Bauer disk-diffusion method. NHC-silver complexes have shown very high antibacterial activity compared to the NHC-precursors. All six NHC-silver complexes were tested for their cytotoxicity through MTT based in vitro tests on the human renal-cancer cell line Caki-1 in order to determine their IC?? values. NHC-silver complexes 4a-f were found to have IC?? values of 6.2 (±1.0), 7.7 (±1.6), 1.2 (±0.6), 10.8 (±1.9), 24.2 (±1.8) and 13.6 (±1.0) μM, respectively. These values represent improved cytotoxicity against Caki-1, most notably for 4c, which is a three times more cytotoxic than cisplatin (IC?? value = 3.3 μM) itself.  相似文献   

17.
The O-methyl substituents of aromatic compounds constitute a C(1) growth substrate for a number of taxonomically diverse anaerobic acetogens. In this study, strain TH-001, an O-demethylating obligate anaerobe, was chosen to represent this physiological group, and the carbon flow when cells were grown on O-methyl substituents as a C(1) substrate was determined by C radiotracer techniques. O-[methyl-C]vanillate (4-hydroxy-3-methoxy-benzoate) was used as the labeled C(1) substrate. The data showed that for every O-methyl carbon converted to [C]acetate, two were oxidized to CO(2). Quantitation of the carbon recovered in the two products, acetate and CO(2), indicated that acetate was formed in part by the fixation of unlabeled CO(2). The specific activity of C in acetate was 70% of that in the O-methyl substrate, suggesting that only one carbon of acetate was derived from the O-methyl group. Thus, it is postulated that the carboxyl carbon of the product acetate is derived from CO(2) and the methyl carbon is derived from the O-methyl substituent of vanillate. The metabolism of O-[methyl-C]vanillate by strain TH-001 can be described as follows: 3CH(3)OC(7)H(5)O(3) + CO(2) + 4H(2)O --> CH(3)COOH + 2CO(2) + 10H + 10e + 3HOC(7)H(5)O(3).  相似文献   

18.
Proteolytic inactivation of C4b is a crucial step for regulation of the classical complement pathway. A plasma protease factor I and membrane cofactors, C3b/C4b receptor (CR1) and membrane cofactor protein (MCP), participate in the regulation of cell-bound C4b although the physiological potency of these cofactors remains unknown. We have examined the optimal conditions of the factor I-mediated C4b regulatory system using purified cofactors. CR1 being a cofactor at a cofactor/C4b ratio less than 0.1 (w/w), fluid phase C4b, and methylamine-treated C4 (C4ma) were degraded by factor I into C4bi: minimal Cd4 was generated in the fluid phase. Liposome-bound C4b (LAC4b), on the other hand, was degraded into C4c and C4d. CR1 showed two optimal pHs (6.0 and 7.5) for fluid phase C4b, but one (6.0) for LAC4b, and in both cases low conductivity conditions enhanced the C4bi generation. CR1 cofactor activity was barely influenced by the NP-40 concentration. On the other hand, MCP degraded C4b and C4ma, as a factor I-cofactor, more efficiently into C4c and C4d. Though MCP cofactor activity, like that of CR1, was enhanced under low conductivity conditions, it has only one optimal pH, 6.0, in both fluid and solid phases. Furthermore, as in the case of C3b cleavage, a sufficient NP-40 concentration to solubilize membrane was needed for MCP to express full cofactor activity for C4b, in contrast to CR1. MCP was less potent for C4b inactivation than for C3b inactivation, while CR1 acted as a slightly more effective cofactor for C4b cleavage than for C3b cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Methyl octadec-11Z-en-9-ynoate (1) was epoxidized to give methyl 11,12-Z-epoxy-octadec-9-ynoate (2, 81%). Acid catalyzed ring opening of the epoxy ring of compound 2 gave methyl 11,12-dihydroxy-octadec-9-ynoate (3, 80%). The latter was treated with mesyl chloride to yield methyl 11,12-dimesyloxy-octadec-9-ynoate (4, 76%). Reaction of compound 4 with sodium azide furnished methyl 11-azido-12-mesyloxy-octadec-9-ynoate (5a, 49%) and methyl 11-azido-octadec-11E-en-9-ynoate (5b, 24%). Compound 2 was semi-hydrogenated over Lindlar catalyst to give methyl 11,12-Z-epoxy-octadec-9Z-enoate (6, 90%). This allylic epoxy fatty ester (6) was reacted with sodium azide to give a mixture of methyl 11-azido-12-hydroxy-octadec-9Z-enoate (7a) and methyl 9-azido-12-hydroxy-octadec-9E-enoate (7b), which could not be separated into individual components by silica chromatography. Chromic acid oxidation of the mixture of compounds 7a and 7b furnished methyl 9-azido-12-oxo-octadec-10E-enoate (8, 42% based on amount of compound 6 used) and an intractable mixture of polar compounds. The various products were characterized by NMR spectroscopic and mass spectral analyses.  相似文献   

20.
The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°C and did not grow or produce methane at 65°C. An accidental shift of digestor temperature from 58 to 64°C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from 14CH3COO was optimal at 65°C and completely inhibited at 75°C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70°C. Methanogenesis from 14CO2 in the sludge was optimal at 65°C and still proceeded at 75°C. A CO2-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75°C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65°C produced more methane than sludge incubated at 60°C, and no acetate accumulated at 65°C. Methanogenesis was severely inhibited in sludge incubated at 70°C, but since neither acetate nor H2 accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号