首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrasting observations raise the question of the role of mycobacterial derived products as compared with the whole bacterium Mycobacterium tuberculosis on maturation and function of human dendritic cells (DCs). DC-SIGN has been identified as the key DC receptor for M. tuberculosis through its interaction with the mannosylated lipoarabinomannan (ManLAM). Although ManLAM is a major mycobacterial component released from infected antigen-presenting cells, there is no formal evidence yet for an effect of ManLAM per se on DC maturation and function. DCs activated with purified ManLAM displayed an intermediate maturation phenotype as compared with lipopolysaccharide fully matured DCs with reduced expression of MHC class I and class II molecules, CD83 and CD86 and of the chemokine receptor CCR7. They were sensitive to autologous natural killer (NK) lysis, thus behaving like immature DCs. However, ManLAM-activated DCs lost phagocytic activity and triggered priming of naive T-cells, confirming their intermediate maturation. Partial maturation of ManLAM-activated DCs was overcome by triggering the CD40/CD40L pathway as a second signal, which completed maturation phenotypically and abolished autologous NK lysis susceptibility. Altogether, these data provide evidence that ManLAM may induce a partial maturation phenotype on non-infected bystander DCs during infection suggesting that ManLAM released from infected cells might impair adaptive immune response towards M. tuberculosis.  相似文献   

2.
Dendritic cell (DC)-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN: CD209) is a C-type lectin that binds ICAM-2,3 and various pathogens such as HIV, helicobacter, and mycobacteria. It has been suggested that Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, interacts with DC-SIGN to evade the immune system. To directly analyze the role of human DC-SIGN during mycobacterial infection, we generated conventional transgenic (tg) mice (termed "hSIGN") using CD209 cDNA under the control of the murine CD11c promoter. Upon mycobacterial infection, DCs from hSIGN mice produced significantly less IL-12p40 and no significant differences were be observed in the secretion levels of IL-10 relative to control DCs. After high dose aerosol infection with the strain M. tuberculosis H37Rv, hSIGN mice showed massive accumulation of DC-SIGN(+) cells in infected lungs, reduced tissue damage and prolonged survival. Based on our in vivo data, we propose that instead of favoring the immune evasion of mycobacteria, human DC-SIGN may have evolved as a pathogen receptor promoting protection by limiting tuberculosis-induced pathology.  相似文献   

3.
Mycobacterial infection in MyD88-deficient mice   总被引:7,自引:0,他引:7  
MyD88 is an adaptor protein that plays a major role in TLR/IL-1 receptor family signaling. To understand the role of MyD88 in the development of murine tuberculosis in vivo, MyD88 knockout (KO) mice aerially were infected with Mycobacterium tuberculosis. Infected MyD88 mice were not highly susceptible to M. tuberculosis infection, but they developed granulomatous pulmonary lesions with neutrophil infiltration which were larger than those in wild-type (WT) mice (P < 0.01). The pulmonary tissue levels of mRNA for iNOS and IL-18 were slightly lower, but levels of mRNA for IL-1 beta, IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TGF-beta were higher in MyD88 KO mice. IFN-gamma, TNF-alpha, IL-1 beta, and IL-12 also were high in the sera of MyD88 KO mice. There were no statistically significant differences in the expression of TNF-alpha, IL-12, and ICAM-1 mRNA between MyD88 KO and WT mice. Thus, MyD88 deficiency did not influence the development of murine tuberculosis. NF-kappa B activity was similar in the alveolar macrophages from the lung tissues of MyD88 KO and WT mice. Also, there may be a TLR2-specific, MyD88-independent IL-1 receptor/TLR-mediated pathway to activate NF-kappa B in the host defense against mycobacterial infection.  相似文献   

4.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   

5.
Induction of apoptosis by Mycobacterium tuberculosis in murine macrophage involves TNF-alpha and nitric oxide (NO) production and caspase cascade activation; however, the intracellular signaling pathways implicated remain to be established. Our results indicate that infection of the B10R murine macrophage line with M. tuberculosis induces apoptosis independent of mycobacterial phagocytosis and that M. tuberculosis induces protein tyrosine kinase (PTK) activity, JAK2/STAT1-alpha phosphorylation, and STAT1-alpha nuclear translocation. Inhibitors of PTK (AG-126), or JAK2 (AG-490) inhibited TNF-alpha and NO production, caspase 1 activation and apoptosis, suggesting that M. tuberculosis-induction of these events depends on JAK2/STAT1-alpha activation. In addition, we have obtained evidence that ManLAM capacity to inhibit M. tuberculosis-induced apoptosis involves the activation of the PTP SHP-1. The finding that M. tuberculosis infection activate JAK2/STAT1-alpha pathway suggests that M. tuberculosis might mimic macrophage-activating stimuli.  相似文献   

6.
Mycobacterium tuberculosis lipomannans (LMs) modulate the host innate immune response. The total fraction of Mycobacterium bovis BCG LM was shown both to induce macrophage activation and pro-inflammatory cytokines through Toll-like receptor 2 (TLR2) and to inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages through a TLR2-independent pathway. The pro-inflammatory activity was attributed to tri- and tetra-acylated forms of BCG LM but not the mono- and di-acylated ones. Here, we further characterize the negative activities of M. bovis BCG LM on primary murine macrophage activation. We show that di-acylated LMs exhibit a potent inhibitory effect on cytokine and NO secretion by LPS-activated macrophages. The inhibitory activity of mycobacterial mannose-capped lipoarabino-mannans on human phagocytes was previously attributed to their binding to the C-type lectins mannose receptor or specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). However, we found that di-acylated LM inhibition of LPS-induced tumor necrosis factor secretion by murine macrophages was independent of TLR2, mannose receptor, or the murine ortholog SIGNR1. We further determined that tri-acyl-LM, an agonist of TLR2/TLR1, promoted interleukin-12 p40 and NO secretion through the adaptor proteins MyD88 and TIRAP, whereas the fraction containing tetra-acylated LM activated macrophages in a MyD88-dependent fashion, mostly through TLR4. TLR4-dependent pro-inflammatory activity was also seen with M. tuberculosis LM, composed mostly of tri-acylated LM, suggesting that acylation degree per se might not be sufficient to determine TLR2 versus TLR4 usage. Therefore, LM acylation pattern determines the anti-inflammatory versus pro-inflammatory effects of LM through different pattern recognition receptors or signaling pathways and may represent an additional mean of regulating the host innate immunity by mycobacteria.  相似文献   

7.
It is important to gain a better understanding of IL-1-mediated signaling events in mycobacterial infection. In order to clarify the role of IL-1 receptor type 1 (IL-1 R1) in IL-1 R1, knockout (KO) mice were infected with either Mycobacterium tuberculosis H37Rv or Kurono strain by the respiratory route, and their ability to control mycobacterial growth, pulmonary granuloma formation, and cytokine mRNA expression was investigated. IL-1 R1 KO mice developed significantly larger (P< 0.01) granulomatous lesions with neutrophil infiltration in their lungs than wild-type mice did after infection with the M. tuberculosis Kurono strain. The number of mycobacterial colonies in lungs and spleen increased from five weeks post-infection. Interferon-y production by spleen cells was low in IL-1 R1 KO mice. It is concluded that the IL-1 R1 is essential for IL-1-mediated signaling events in mycobacterial infection.  相似文献   

8.
The role of macrophage-inducible C-type lectin Mincle in lung innate immunity against mycobacterial infection is incompletely defined. In this study, we show that wild-type (WT) mice responded with a delayed Mincle induction on resident alveolar macrophages and newly immigrating exudate macrophages to infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), peaking by days 14-21 posttreatment. As compared with WT mice, Mincle knockout (KO) mice exhibited decreased proinflammatory mediator responses and leukocyte recruitment upon M. bovis BCG challenge, and they demonstrated increased mycobacterial loads in pulmonary and extrapulmonary organ systems. Secondary mycobacterial infection on day 14 after primary BCG challenge led to increased cytokine gene expression in sorted alveolar macrophages of WT mice, but not Mincle KO mice, resulting in substantially reduced alveolar neutrophil recruitment and increased mycobacterial loads in the lungs of Mincle KO mice. Collectively, these data show that WT mice respond with a relatively late Mincle expression on lung sentinel cells to M. bovis BCG infection. Moreover, M. bovis BCG-induced upregulation of C-type lectin Mincle on professional phagocytes critically shapes antimycobacterial responses in both pulmonary and extrapulmonary organ systems of mice, which may be important for elucidating the role of Mincle in the control of mycobacterial dissemination in mice.  相似文献   

9.
IL-4 is required for defense against mycobacterial infection   总被引:9,自引:0,他引:9  
Although the involvement of T helper (Th1) cells is central to protection against intracellular bacteria, including Mycobacterium tuberculosis, the involvement of Th2 cells, characterized by potent interleukin (IL)-4 secretion in mycobacterial infection is still unclear. In order to clarify the role of IL-4 in murine tuberculosis, IL-4-deficient mutant mice, IL-4 knockout (IL-4 KO) mice, were utilized. The mice were infected with H37Rv, Kurono or BCG Pasteur via an airborne infection route by placing them in the exposure chamber of a Middlebrook airborne infection apparatus. Their capacity to control mycobacterial growth, granuloma formation, cytokine secretion, and nitric oxide (NO) production were examined. These mice developed large granulomas, but not necrotic lesions in the lungs, liver or spleen (P<0.05). This was consistent with a significant increase in lung colony-forming units (CFU). Compared with levels in wild-type mice, upon stimulation with mycobacteria, splenic IL-10 levels were low and IL-6 levels were intermediate, but interferon (IFN)-gamma and IL-12 levels were significantly higher. IL-18 levels were within the normal range. The level of NO production by alveolar macrophages of the IL-4 KO mice was similar to that of the wild-type mice. Granulomatous lesion development by IL-4 KO mice was inhibited significantly by treatment with exogenous recombinant IL-4. These findings were not specific to the IL-4 KO mice used. Our data show that IL-4 may play a protective role in defense against mycobacteria, although IFN-gamma and TNF-alpha play major roles in it. Our data do not rule out an IFN-gamma-independent function of IL-4 in controlling tuberculosis.  相似文献   

10.
Mycobacterial infection in TLR2 and TLR6 knockout mice   总被引:11,自引:0,他引:11  
To investigate the role of TLR in the development of murine tuberculosis in vivo, TLR2 and TLR6 knockout (KO) mice were infected with Mycobacterium tuberculosis by placing them in the exposure chamber of an airborne infection apparatus. Both TLR2 and TLR6 KO mice survived until sacrifice at 12 weeks after infection. Infected TLR2 KO mice developed granulomatous pulmonary lesions with neutrophil infiltration, which were slightly larger in size than those in wild-type mice. Pulmonary levels of the mRNAs for inducible nitric oxide synthase (iNOS), TNF-alpha, TGF-beta, IL-1beta, and IL-2 were significantly lower, but levels of the mRNAs for IL-4 and IL-6 were higher, than in wild-type (WT) mice. No significant difference was recognized in cytokine mRNA expression between TLR2 KO and WT mice at 12 weeks after infection. DNA binding by NF-kappaB was low in TLR2 KO mice. On the other hand, TLR6 KO mice were not different from WT mice in terms of pulmonary histopathology, mRNA expression and CFU assay. Therefore, TLR2 does not play an essential role in the pathogenesis of murine tuberculosis, although it is important for defense against mycobacterial infection.  相似文献   

11.
Mannose‐capped lipoarabinomannan (ManLAM) is an immunomodulatory epitope of Mycobacterium tuberculosis (Mtb). An aptamer (ZXL1) that specifically binds to ManLAM from the virulent Mtb H37Rv strain was previously generated and it was found that ZXL1 functions as an antagonist, inhibiting the ManLAM‐induced immunosuppression of DCs. In the present study, it was found that ZXL1 inhibits Mtb entry into murine macrophages and that ZXL1 enhances IL‐1β and IL‐12 mRNA expression and cytokine production in ManLAM‐treated macrophages but decreases IL‐10 production. Inducible nitric oxide synthase expression in macrophages was upregulated in the presence of ZXL1 after stimulation with ManLAM. ZXL1 was also found to inhibit expression of lipid‐sensing nuclear receptor peroxisome proliferator‐activated receptor γ (PPAR‐γ). These results suggest that ZXL1 promotes anti‐tuberculosis activity through downregulation of PPAR‐γ expression, which may contribute to M1 macrophage polarization and Mtb killing by macrophages.  相似文献   

12.
Mannose‐capped lipoarabinomannan (ManLAM) is considered an important virulence factor of Mycobacterium tuberculosis. However, while mannose caps have been reported to be responsible for various immunosuppressive activities of ManLAMobserved in vitro, there is conflicting evidence about their contribution to mycobacterial virulence in vivo. Therefore, we used Mycobacterium bovis BCG and M. tuberculosis mutants that lack the mannose cap of LAM to assess the role of ManLAM in the interaction of mycobacteria with the host cells, to evaluate vaccine‐induced protection and to determine its importance in M. tuberculosis virulence. Deletion of the mannose cap did not affect BCG survival and replication in macrophages, although the capless mutant induced a somewhat higher production of TNF. In dendritic cells, the capless mutant was able to induce the upregulation of co‐stimulatory molecules and the only difference we detected was the secretion of slightly higher amounts of IL‐10 as compared to the wild type strain. In mice, capless BCG survived equally well and induced an immune response similar to the parental strain. Furthermore, the efficacy of vaccination against a M. tuberculosis challenge in low‐dose aerosol infection models in mice and guinea pigs was not affected by the absence of the mannose caps in the BCG. Finally, the lack of the mannose cap in M. tuberculosis did not affect its virulence in mice nor its interaction with macrophages in vitro. Thus, these results do not support a major role for the mannose caps of LAM in determining mycobacterial virulence and immunogenicity in vivo in experimental animal models of infection, possibly because of redundancy of function.  相似文献   

13.
14.
Mycobacterium tuberculosis infects not only host macrophages but also nonprofessional phagocytes, such as alveolar epithelial cells. Glycosaminoglycans (GAGs) are considered as the component of mycobacterial adherence to epithelial cells. Here we show that extracellularly occurring mycobacterial DNA-binding protein 1 (MDP1) promotes mycobacterial infection to A549 human lung epithelial cells through hyaluronic acid (HA). Both surface plasmon resonance analysis and enzyme-linked immunosorbent assay revealed that MDP1 bound to HA, heparin, and chondroitin sulfate. Utilizing synthetic peptides, we next defined heparin-binding site of 20 amino acids from 31 to 50 of MDP1, which is responsible for the specific DNA-binding site of MDP1. MDP1 bound to A549 cells, and exogenous DNA and HA interfered with the interaction. The binding was also abolished by treatment of A549 cells with hyaluronidase, suggesting that HA participates in the MDP1-A549 cell interaction. Adherence of bacillus Calmette-Guérin (BCG) and M. tuberculosis to A549 cells was inhibited by addition of HA, DNA, and anti-MDP1 antibody, showing that MDP1 participates in the interaction between mycobacteria-alveolar epithelial cells. Simultaneous treatment of intratracheal BCG-infected mice with HA reduced the growth of BCG in vivo. Taken together, theses results suggest that HA participates in Mycobacterium-lung epithelium interaction and has potential for therapeutic and prophylactic interventions in mycobacterial infection.  相似文献   

15.
The cell wall component lipoarabinomannan (ManLAM) from Mycobacterium tuberculosis is involved in the inhibition of phagosome maturation, apoptosis and interferon (IFN)-gamma signalling in macrophages and interleukin (IL)-12 cytokine secretion of dendritic cells (DC). All these processes are important for the host to mount an efficient immune response. Conversely, LAM isolated from non-pathogenic mycobacteria (PILAM) have the opposite effect, by inducing a potent proinflammatory response in macrophages and DCs. LAMs from diverse mycobacterial species differ in the modification of their terminal arabinose residues. The strong proinflammatory response induced by PILAM correlates with the presence of phospho-myo-inositol on the terminal arabinose. Interestingly, recent work indicates that the biosynthetic precursor of LAM, lipomannan (LM), which is also present in the cell wall, displays strong proinflammatory effects, independently of which mycobacterial species it is isolated from. Results from in vitro assays and knock-out mice suggest that LM, like PILAM, mediates its biological activity via Toll-like receptor 2. We hypothesize that the LAM/LM ratio might be a crucial factor in determining the virulence of a mycobacterial species and the outcome of the infection. Recent progress in the identification of genes involved in the biosynthesis of LAM is discussed, in particular with respect to the fact that enzymes controlling the LAM/LM balance might represent targets for new antitubercular drugs. In addition, inactivation of these genes may lead to attenuated strains of M. tuberculosis for the development of new vaccine candidates.  相似文献   

16.
The lectins DC-SIGN and DC-SIGNR can augment viral infection; however, the range of pathogens interacting with these attachment factors is incompletely defined. Here we show that DC-SIGN and DC-SIGNR enhance infection mediated by the glycoprotein (GP) of Marburg virus (MARV) and the S protein of severe acute respiratory syndrome coronavirus and might promote viral dissemination. SIGNR1, a murine DC-SIGN homologue, also enhanced infection driven by MARV and Ebola virus GP and could be targeted to assess the role of attachment factors in filovirus infection in vivo.  相似文献   

17.
Host immunity to Mycobacterium tuberculosis is mediated by T cells that recognize and activate infected macrophages to control intracellular bacterial replication. The early appearance of T cells in the lungs of infected mice correlates with greater resistance to infection. However, it is unknown whether the trafficking of T cells to the lung following infection is dependent upon the expression of certain adhesion molecules. To address this question, we infected knockout (KO) mice that have defective expression of CD11a, CD11b, CD18, CD62, CD103, or beta7. We found that the integrins CD11a and CD18 are absolutely required for host resistance following infection with aerosolized M. tuberculosis. Although Ag-specific T cells are generated following infection of CD11a KO mice, T cell priming is delayed, T cell trafficking to the lung is impaired, and fewer ESAT6-specific CD4+ T cells are found in the lungs of CD11a KO mice compared with control mice. Thus, LFA-1 (CD11a/CD18) plays an essential role in immunity to M. tuberculosis infection.  相似文献   

18.
Although CD4 T cells are required for host resistance to Mycobacterium tuberculosis, they may also contribute to pathology. In this study, we examine the role of the inhibitory receptor PD-1 and its ligand PD-L1 during M. tuberculosis infection. After aerosol exposure, PD-1 knockout (KO) mice develop high numbers of M. tuberculosis-specific CD4 T cells but display markedly increased susceptibility to infection. Importantly, we show that CD4 T cells themselves drive the increased bacterial loads and pathology seen in infected PD-1 KO mice, and PD-1 deficiency in CD4 T cells is sufficient to trigger early mortality. PD-L1 KO mice also display enhanced albeit less severe susceptibility, indicating that T cells are regulated by multiple PD ligands during M. tuberculosis infection. M. tuberculosis-specific CD8 T cell responses were normal in PD-1 KO mice, and CD8 T cells only had a minor contribution to the exacerbated disease in the M. tuberculosis-infected PD-1 KO and PD-L1 KO mice. Thus, in the absence of the PD-1 pathway, M. tuberculosis benefits from CD4 T cell responses, and host resistance requires inhibition by PD-1 to prevent T cell-driven exacerbation of the infection.  相似文献   

19.
The human pulmonary surfactant protein A (hSP-A) has been implicated in the early capture and phagocytosis of the pathogenic Mycobacterium tuberculosis by alveolar macrophages. In this report, we examined the interaction of alveolar proteinosis patient hSP-A with Mycobacterium bovis BCG, the vaccinating strain, as a model of pathogenic mycobacteria, and Mycobacterium smegmatis, a nonpathogenic strain. We found that hSP-A binds to the surface of M. bovis BCG, but also to a slightly lesser extent, to M. smegmatis, indicating that hSP-A does not discriminate between virulent and nonpathogenic strains. Among the various glycoconjugates isolated from the mycobacterial envelope, we found that the best ligands are the two major lipoglycans: the mannosylated lipoarabinomannan (ManLAM) and the lipomannan. In contrast, the mannose-capped arabinomannan, structurally close to the ManLAM, as well as the LAMs from the non pathogenic M. smegmatis are poorly recognized by hSP-A. These results clearly show that the presence of both the terminal mannose residues and the phophatidyl-myo-inositol anchor are necessary to achieve the highest binding affinity. Selective removal of either the terminal mannose or the acyl residues esterifying the glycerol moiety of the ManLAM abrogates the interaction with hSP-A, further supporting the notion that the hSP-A recognition of the carbohydrate epitopes of the lipoglycans is dependent of the presence of the fatty acids.  相似文献   

20.
Dendritic cells (DC) are unique in their ability to initiate a primary immune response by the presentation of soluble Ags to T cells. Recent studies have shown that DC also phagocytose particulate Ags including the intracellular pathogen Mycobacterium tuberculosis. However, it is not known whether DC contain the growth of intracellular organisms or allow unlimited replication. To address this question, we infected human DC with a virulent strain of M. tuberculosis and monitored the intracellular growth. The bacteria grew two orders of magnitude within 7 days of culture. Among cytokines known to modulate mycobacterial growth particularly in murine macrophages (TNF-alpha, IFN-gamma, TGF-beta, IL-4), only IL-10 modulated the growth in human DC. This effect was specific for immature dendritic cells, as IL-10 did not induce growth inhibition in human macrophages. In searching for the mechanism of growth inhibition, we found that IL-10 induces the down-regulation of the DC marker CD1, while the macrophage marker CD14 was up-regulated. Functionally, IL-10-treated cells had a reduced capacity to induce an alloresponse, but phagocytic uptake of M. tuberculosis was more efficient. We also show that DC are inferior to macrophages in containing mycobacterial growth. These findings show that IL-10 converts DC into macrophage-like cells, thereby inducing the growth inhibition of an intracellular pathogen. At the site of a local immune response, such as a tuberculous granuloma, IL-10 might therefore participate in the composition of the cellular microenvironment by affecting the maturity and function of DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号