首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The autoinducer-2 (AI-2) quorum sensing system is involved in a range of population-based bacterial behaviors and has been engineered for cell–cell communication in synthetic biology systems. Investigation into the cellular mechanisms of AI-2 processing has determined that overexpression of uptake genes increases AI-2 uptake rate, and genomic deletions of degradation genes lowers the AI-2 level required for activation of reporter genes. Here, we combine these two strategies to engineer an Escherichia coli strain with enhanced ability to detect and respond to AI-2. In an E. coli strain that does not produce AI-2, we monitored AI-2 uptake and reporter protein expression in a strain that overproduced the AI-2 uptake or phosphorylation units LsrACDB or LsrK, a strain with the deletion of AI-2 degradation units LsrF and LsrG, and an “enhanced” strain with both overproduction of AI-2 uptake and deletion of AI-2 degradation elements. By adding up to 40 μM AI-2 to growing cell cultures, we determine that this “enhanced” AI-2 sensitive strain both uptakes AI-2 more rapidly and responds with increased reporter protein expression than the others. This work expands the toolbox for manipulating AI-2 quorum sensing processes both in native environments and for synthetic biology applications.  相似文献   

2.
3.
Antibacterial resistance is an issue of increasing severity as current antibiotics are losing their effectiveness and fewer antibiotics are being developed. New methods for combating bacterial virulence are required. Modulating molecular communication among bacteria can alter phenotype, including attachment to epithelia, biofilm formation, and even toxin production. Intercepting and modulating communication networks provide a means to attenuate virulence without directly interacting with the bacteria of interest. In this work, we target communication mediated by the quorum sensing (QS) bacterial autoinducer‐2, AI‐2. We have assembled a capsule of biological polymers alginate and chitosan, attached an AI‐2 processing kinase, LsrK, and provided substrate, ATP, for enzymatic alteration of AI‐2 in culture fluids. Correspondingly, AI‐2 mediated QS activity is diminished. All components of this system are “biofabricated”—they are biologically derived and their assembly is accomplished using biological means. Initially, component quantities and kinetics were tested as assembled in microtiter plates. Subsequently, the identical components and assembly means were used to create the “artificial cell” capsules. The functionalized capsules, when introduced into populations of bacteria, alter the dynamics of the AI‐2 bacterial communication, attenuating QS activated phenotypes. We envision the assembly of these and other capsules or similar materials, as means to alter QS activity in a biologically compatible manner and in many environments, including in humans.
  相似文献   

4.
Recent reports have shown that bacterial cell-cell communication or quorum sensing is quite prevalent in pathogenic Escherichia coli, especially at high cell density; however, the role of quorum sensing in nonpathogenic E. coli is less clear and, in particular, there is no information regarding the role of quorum sensing in overexpression of plasmid-encoded genes. In this work, it was found that the activity of a quorum signaling molecule, autoinducer-2 (AI-2), decreased significantly following induction of several plasmid-encoded genes in both low and high-cell-density cultures of E. coli. Furthermore, we show that AI-2 signaling level was linearly related to the accumulation level of each protein product and that, in general, the highest rates of recombinant protein accumulation resulted in the greatest attenuation of AI-2 signaling. Importantly, our findings demonstrate for the first time that recombinant E. coli communicate the stress or burden of overexpressing heterologous genes through the quorum-based AI-2 signaling pathway.  相似文献   

5.
【目的】LuxS/AI-2型密度感应系统存在于革兰氏阴性和阳性菌中,可产生用于细菌种间交流的通用自诱导信号分子AI-2(Autoinducer-2,AI-2),细菌许多生理功能都受此系统的调节。本研究开展对禽致病性大肠杆菌(Avian Pathogenic Escherichia coli,APEC)自诱导信号分子AI-2的检测和建立体外合成、定量的方法,为进一步研究APEC的AI-2调控作用奠定基础。【方法】利用哈维弧菌BB170(Vibrio harveyi BB170)开展对APEC AI-2的检测;利用表达、纯化的LuxS和Pfs在体外催化S-腺苷同型半胱氨酸(Sadenosylhomocysteine,SAH),进行AI-2的体外合成。【结果】APEC能产生自诱导信号分子AI-2;成功表达可用于AI-2合成的可溶性重组蛋白LuxS和Pfs;纯化的重组蛋白LuxS和Pfs与SAH同时作用后,合成了浓度为300μmol/L的AI-2;运用哈维弧菌BB170对合成的AI-2活性检测表明,其活性是阴性对照的700倍。【结论】APEC存在LuxS/AI-2型密度感应系统,APEC的LuxS和Pfs可以在体外催化SAH生成有活性的AI-2分子。本研究为进一步研究APEC的AI-2的调控作用奠定基础。  相似文献   

6.
具有鲁棒性的基因回路构建是合成生物学的基础工作.基于群体感应的自杀基因回路转化大肠杆菌后赋予宿主菌在一定菌群密度时启动自杀的特性.为了使基因回路更具鲁棒性,在转化后以不同浓度的IPTG为诱导剂,观察宿主菌的表型特征以及在自杀过程中突变菌产生的规律,并通过基因测序确定变异位点.结果表明:IPTG浓度与细菌自杀率呈正相关,自杀强度愈大,突变菌株出现得越早,蔓延的速度也越快.基因测序结果表明,在基因回路质粒上,luxR基因中间有转座子插入,从而破坏了群体感应系统.实验也表明:仅需该突变,就足以使宿主菌逃避自杀.结果为下一步优化基因回路设计,实现细菌密度的连续振荡提供了思路.  相似文献   

7.
AIMS: To evaluate the effect of Vibrio harveyi strains on the growth rate of the gnotobiotically cultured rotifer Brachionus plicatilis, and to establish whether quorum sensing is involved in the observed phenomena. METHODS AND RESULTS: Gnotobiotic B. plicatilis sensu strictu, obtained by hatching glutaraldehyde-treated amictic eggs, were used as test organisms. Challenge tests were performed with 11 V. harveyi strains and different quorum sensing mutants derived from the V. harveyi BB120 strain. Brominated furanone [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone] as a quorum sensing inhibitor was tested in Brachionus challenge tests. Some V. harveyi strains, such as strain BB120, had a significantly negative effect on the Brachionus growth rate. In the challenge test with MM77, an isogenic strain of BB120 in which the two autoinducers (HAI-1 and AI-2) are both inactivated, no negative effect was observed. The effect of single mutants was the same as that observed in the BB120 strain. This indicates that both systems are responsible for the growth-retarding (GR) effect of the BB120 strain towards Brachionus. Moreover, the addition of an exogenous source of HAI-1 or AI-2 could restore the GR effect in the HAI-1 and AI-2 nonproducing mutant MM77. The addition of brominated furanone at a concentration of 2.5 mg l(-1) could neutralize the GR effect of some strains such as BB120 and VH-014. CONCLUSIONS: Two quorum sensing systems in V. harveyi strain BB120 (namely HAI-1 and AI-2-mediated) are necessary for its GR effect on B. plicatilis. With some other V. harveyi strains, however, growth inhibition towards Brachionus does not seem to be related to quorum sensing. SIGNIFICANCE AND IMPACT OF THE STUDY: Interference with the quorum sensing system might help to counteract the GR effect of some V. harveyi strains on Brachionus. However, further studies are needed to demonstrate the positive effect of halogenated furanone in nongnotobiotic Brachionus cultures and eventually, in other segments of the aquaculture industry.  相似文献   

8.
Nanofactories are nano-dimensioned and comprised of modules serving various functions that alter the response of targeted cells when deployed by locally synthesizing and delivering cargo to the surfaces of the targeted cells. In its basic form, a nanofactory consists of a minimum of two functional modules: a cell capture module and a synthesis module. In this work, magnetic nanofactories that alter the response of targeted bacteria by the localized synthesis and delivery of the "universal" bacterial quorum sensing signal molecule autoinducer AI-2 are demonstrated. The magnetic nanofactories consist of a cell capture module (chitosan-mag nanoparticles) and an AI-2 biosynthesis module that contains both AI-2 biosynthetic enzymes Pfs and LuxS on a fusion protein (His-LuxS-Pfs-Tyr, HLPT) assembled together. HLPT is hypothesized to be more efficient than its constituent enzymes (used separately) at conversion of the substrate SAH to product AI-2 on account of the proximity of the two enzymes within the fusion protein. HLPT is demonstrated to be more active than the constituent enzymes, Pfs and LuxS, over a wide range of experimental conditions. The magnetic nanofactories (containing bound HLPT) are also demonstrated to be more active than free, unbound HLPT. They are also shown to elicit an increased response in targeted Escherichia coli cells, due to the localized synthesis and delivery of AI-2, when compared to the response produced by the addition of AI-2 directly to the cells. Studies investigating the universality of AI-2 and unraveling AI-2 based quorum sensing in bacteria using magnetic nanofactories are envisioned. The prospects of using such multi-modular nanofactories in developing the next generation of antimicrobials based on intercepting and interrupting quorum sensing based signaling are discussed.  相似文献   

9.
We recently found that the basal micro substrate presentation of E-cadherin, a key cell-cell adhesion molecule in the liver, can modulate hepatocellular proliferative potential and differentiated function (Brieva and Moghe, in press). In the current study, we established a similar experimental model involving rat hepatocytes cultured on collagen and incorporated 5 microm polystyrene microbeads functionalized with Protein A-anchored E-cadherin/human lgG Fc chimeric fusion constructs. We investigated the cadherin governed dose-response of cell proliferative potential and quantified the underlying changes in intracellular gene signaling processes. Hepatocellular proliferative potential was found to be intensified with an increase in the microdisplay of acellular cadherins and this effect was offset by increased cell seeding density. Notably, we report that following overnight exposure to acellular cadherins, the expression of genes known to mediate the control of cell proliferation, cyclin D1 and c-myc, was upregulated, while the expression of differentiation-related genes, namely albumin and cytochrome p450 II B1, was reduced. The exposure of cell cultures to exogenous cadherins was found to markedly disrupt the localization of endogenous E-cadherin and beta-catenin to junctions at cell-cell contacts and cause a quantitative decrease in the endogenous cadherin protein levels. Based on all of our observations, we propose that the acellular presentation of E-cadherin chimeras competitively disrupts endogenous cadherin containing complexes at cell-cell junctions and increases intracellular cadherin turnover, thereby promoting beta-catenin mediated signaling, which ultimately engenders an increase in cell proliferative potential and a decrease in differentiated function.  相似文献   

10.
内生菌Pseudomonas sp. G5 phzIR基因的克隆与表达   总被引:2,自引:0,他引:2  
假单胞菌菌株G5是分离自香菜(Coriandrum sativumL.)茎内的一株内生菌,经BIOLOG系统分析其底物利用图谱,初步鉴定为桔黄假单胞菌Pseudomonas aurantiaca。大量研究已表明许多革兰氏阴性细菌应用群体感应系统,通过感应扩散性小信号分子―乙酰基高丝氨酸内酯(N-acyl homoserine lactones,AHLs),以种群密度依赖的方式调控基因表达,控制植物相关细菌的多种表型。本研究组合应用AHLs检测菌株Chromobacterium violaceum CV026和薄层层析分析,初步检测出菌株G5可产生几种可检测水平的AHLs信号分子,其中以N-hexanoyl-homoserine lactone(C6-HSL,HHL)为主,迁移率Rf值为0.4。进一步克隆和测序了该菌株中由PhzI和PhzR组成的群体感应quorumsensing系统的编码基因phzIR,并在大肠杆菌中异源表达了AHLs信号分子合成酶基因phzI。序列和系统进化分析表明它们与假单胞菌属其他的phzIR基因有高度同源性和进化上的保守性。  相似文献   

11.
12.
Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer‐2 (AI‐2), a universal molecule for both intra‐ and inter‐species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI‐2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI‐2 exporter superfamily, has been shown to export AI‐2. Here, we report the cryogenic electron microscopic structures of two AI‐2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI‐2 exporter exists as a homo‐pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI‐2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator‐type transport mechanism.  相似文献   

13.
14.
The formation of biofilm communities enhances the persistence of Vibrio cholerae in aquatic environments. Biofilm production is repressed by the quorum-sensing regulator HapR in response to the accumulation of CAI-1 and AI-2. CAI-1 is the strongest input signal activating HapR, whereas the role of AI-2 remains ill-defined. In the present study, we show that a V. cholerae luxS (AI-2-defective) mutant made increased biofilm. Interestingly, cells in the biofilm were more responsive to AI-2 deficiency than cells from the planktonic population.  相似文献   

15.
Bacteria are sensitive to an increase in population density and respond quickly and coordinately by induction of certain sets of genes. This mode of regulation, known as quorum sensing (QS), is based on the effect of low-molecular-weight signal molecules, autoinducers (AIs). When the population density is high, AIs accumulate in the medium and interact with regulatory receptor proteins. QS systems are global regulators of bacterial gene expression and play a key role in controlling many metabolic processes in the cell, including bacterial virulence. The review considers the molecular mechanisms of QS in different taxonomic groups of bacteria and discusses QS regulation as a possible target in treating bacterial infections. This is a new, alternative strategy of antibacterial therapy, which includes the construction of drugs acting directly against bacterial pathogenicity by suppressing QS (antipathogenicity drugs). This strategy makes it possible to avoid a wide distribution of antibiotic-resistant pathogenic bacteria and the formation of biofilms, which dramatically increase drug resistance.  相似文献   

16.
17.
The three-dimensional structure of a complex between the N-terminal domain of the quorum sensing protein SdiA of Escherichia coli and a candidate autoinducer N-octanoyl-L-homoserine lactone (C8-HSL) has been calculated in solution from NMR data. The SdiA-HSL system shows the "folding switch" behavior that has been seen for quorum-sensing factors produced by other bacterial species. In the presence of C8-HSL, a significant proportion of the SdiA protein is produced in a folded, soluble form in an E.coli expression system, whereas in the absence of acyl homoserine lactones, the protein is expressed into insoluble inclusion bodies. In the three-dimensional structure, the autoinducer molecule is sequestered in a deep pocket in the hydrophobic core, forming an integral part of the core packing of the folded SdiA. The NMR spectra of the complex show that the bound C8-HSL is conformationally heterogeneous, either due to motion within the pocket or to heterogeneity of the bound structure. The C8-HSL conformation is defined by NOEs to the protein only at the terminal methyl group of the octanoyl chain. Unlike other well-studied bacterial quorum sensing systems such as LuxR of Vibrio fischeri and TraR of Agrobacterium tumefaciens, there is no endogenous autoinducer for SdiA in E.coli: the E.coli genome does not contain a gene analogous to the LuxI and TraI autoinducer synthetases. We show that two other homoserine lactone derivatives are also capable of acting as a folding-switch autoinducers for SdiA. The observed structural heterogeneity of the bound C8-HSL in the complex, together with the variety of autoinducer-type molecules that can apparently act as folding switches in this system, are consistent with the postulated biological function of the SdiA protein as a detector of the presence of other species of bacteria.  相似文献   

18.
Presence of the quorum-sensing regulation system in Vibrio mimicus was investigated. The culture supernatants of V. mimicus strains were found to possess AI-2 autoinducer like activity, and the strains were found to harbor the genes which are homologous to luxS, luxO, and luxR of V. harveyi. These genes of V. harveyi have been shown to be important components of V. harveyi-like quorum-sensing system. The luxO gene homologue known to encode LuxO, the central component of the regulation system, was disrupted, and effects on protease and hemolysin activity were studied. Disruption of luxO gene resulted in the increased protease activity, but the hemolysin activity did not vary considerably.  相似文献   

19.
20.
Two hundred thirteen cytochrome P450 (P450) genes were collected from bacteria and expressed based on an Escherichia coli expression system to test their hydroxylation ability to testosterone. Twenty-four P450s stereoselectively monohydroxylated testosterone at the 2alpha-, 2beta-, 6beta-, 7beta-, 11beta-, 12beta-, 15beta-, 16alpha-, and 17-positions (17-hydroxylation yields 17-ketoproduct). The hydroxylation site usage of the P450s is not the same as that of human P450s, while the 2alpha-, 2beta-, 6beta-, 11beta-, 15beta-, 16alpha-, and 17-hydroxylation are reactions common to both human and bacterial P450s. Most of the testosterone hydroxylation catalyzed by bacterial P450s is on the beta face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号