首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle strength and volume vary greatly among individuals. Maximum isometric joint moment, a standard measurement of strength, has typically been assessed in young, healthy subjects, whereas muscle volumes have generally been measured in cadavers. This has made it difficult to characterize the relationship between isometric strength and muscle size in humans. We measured maximum isometric moments about the shoulder, elbow, and wrist in 10 young, healthy subjects, ranging in size from a 20th percentile female to a 97th percentile male. The volumes of 32 upper limb muscles were determined from magnetic resonance images of these same subjects, and grouped according to their primary function. The maximum moments produced using the shoulder adductors (67.9+/-28.4 Nm) were largest, and were approximately 6.5(+/-1.2) times greater than those produced using the wrist extensors (10.2+/-4.6 Nm), which were smallest. While there were substantial differences in moment-generating capacity among these 10 subjects, moment significantly covaried with muscle volume of the appropriate functional group, explaining between 95% (p<0.0001; shoulder adductors) and 68% (p=0.004; wrist flexors) of the variation in the maximum isometric joint moments among subjects. While other factors, such as muscle moment arms or neural activation and coordination, can contribute to variation in strength among subjects, they either were relatively constant across these subjects compared to large differences in muscle volumes or they covaried with muscle volume. We conclude that differences in strength among healthy young adults are primarily a consequence of variation in muscle volume, as opposed to other factors.  相似文献   

2.
Slips are frequently the cause of fall-related injuries. Identifying modifiable biomechanical requirements for successful recovery is a key prerequisite to developing task-specific fall preventive training programs. The purpose of this study was to quantify the biomechanical role of the upper extremities during the initial phase of a slip resulting in trunk motion primarily in the sagittal plane. Two groups of adults were examined: adults over age 65 who fell and adults aged 18–40 who avoided falling after slipping. We hypothesized that rapid shoulder flexion could significantly reduce trunk extension velocity, that adults who slipped would implement this as a fall avoidance strategy, and that younger adults who avoided falling would use this strategy more effectively than older adults who fell. The kinematics of the 12 younger adults and eight older adults were analyzed using a three-segment conservation of momentum model developed to represent the trunk, head, and upper extremities. The model was used to estimate the possible contribution of the upper extremities to reducing trunk extension velocity. The model showed that upper extremity motion can significantly reduce trunk extension velocity. Although the upper extremities significantly reduced the trunk extension velocity of both young and older adults (p<0.027), the reduction found for the young adults, 13.6±11.4%, was significantly larger than that of the older adults (5.8±3.4%, p=0.045). Given the potential for trunk extension velocity to be reduced by rapid shoulder flexion, fall prevention interventions focused on slip-related falls may benefit from including upper extremity motion as an outcome whether through conventional or innovative strategies.  相似文献   

3.
Slips and falls represent a serious public safety concern in older adults, with the segment of the United States population over the age of 65 accounting for about three quarters of all fall related deaths. The majority of falls in older adults are due to trips and slips. The objective of this study was to investigate how age affects arm reactions generated in response to unexpected slips. Thirty-three participants divided into two age groups (16 young, 17 old) participated in this study. Participants were exposed to two conditions: known dry walking (baseline) and an unexpected slip initiated when stepping onto a glycerol-contaminated floor. The upper extremity parameters of interest included the timing and amplitude of the shoulder flexion moment generated in response to the slip as well as the resulting angular kinematics (trajectories). The analysis of the kinetic data revealed a delayed shoulder flexion reaction to slips in older adults compared to their young counterparts, as well as a greater flexion moment magnitude. Knowledge of such upper body reaction mechanisms to unexpected slips may help to improve balance recovery training in older adults, as well as aid in the implementation of environmental modifications, e.g. handrails, to reduce falls-related injuries.  相似文献   

4.
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献   

5.
Cardiovascular-related mortality increases in the cold winter months, particularly in older adults. Previously, we reported that determinants of myocardial O(2) demand, such as the rate-pressure product, increase more in older adults compared with young adults during cold stress. The aim of the present study was to determine if aging influences the coronary hemodynamic response to cold stress in humans. Transthoracic Doppler echocardiography was used to noninvasively measure peak coronary blood velocity in the left anterior descending artery before and during acute (20 min) whole body cold stress in 10 young adults (25 ± 1 yr) and 11 older healthy adults (65 ± 2 yr). Coronary vascular resistance (diastolic blood pressure/peak coronary blood velocity), coronary perfusion time fraction (coronary perfusion time/R-R interval), and left ventricular wall stress were calculated. We found that cooling (via a water-perfused suit) increased left ventricular wall stress, a primary determinant of myocardial O(2) consumption, in both young and older adults, although the magnitude of this increase was nearly twofold greater in older adults (change of 9.1 ± 3.5% vs. 17.6 ± 3.2%, P < 0.05, change from baseline in young and older adults and young vs. older adults). Despite the increased myocardial O(2) demand during cooling, coronary vasodilation (decreased coronary vascular resistance) occurred only in young adults (3.22 ± 0.23 to 2.85 ± 0.18 mmHg·cm(-1)·s(-1), P < 0.05) and not older adults (3.97 ± 0.24 to 3.79 ± 0.27 mmHg·cm(-1)·s(-1), P > 0.05). Consistent with a blunted coronary vascular response, absolute coronary perfusion time tended to decrease (P = 0.13) and coronary perfusion time fraction decreased (P < 0.05) during cooling in older adults but not young adults. Collectively, these data suggest that older adults demonstrate an altered coronary hemodynamic response to acute cold stress.  相似文献   

6.
Past studies have hypothesized that aspects of hominin upper limb morphology are linked to the ability to produce stone tools. However, we lack the data on upper limb motions needed to evaluate the biomechanical context of stone tool production. This study seeks to better understand the biomechanics of stone tool‐making by investigating upper limb joint kinematics, focusing on the role of the wrist joint, during simple flake production. We test the hypotheses, based on studies of other upper limb activities (e.g., throwing), that upper limb movements will occur in a proximal‐to‐distal sequence, culminating in rapid wrist flexion just prior to strike. Data were captured from four amateur knappers during simple flake production using a VICON motion analysis system (50 Hz). Results show that subjects utilized a proximal‐to‐distal joint sequence and disassociated the shoulder joint from the elbow and wrist joints, suggesting a shared strategy employed in other contexts (e.g., throwing) to increase target accuracy. The knapping strategy included moving the wrist into peak extension (subject peak grand mean = 47.3°) at the beginning of the downswing phase, which facilitated rapid wrist flexion and accelerated the hammerstone toward the nodule. This sequence resulted in the production of significantly more mechanical work, and therefore greater strike forces, than would otherwise be produced. Together these results represent a strategy for increasing knapping efficiency in Homo sapiens and point to aspects of skeletal anatomy that might be examined to assess potential knapping ability and efficiency in fossil hominin taxa. Am J Phys Anthropol 143:134‐145, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The intensity and spatial representation of electromyographical (EMG) activity were examined to characterize the effects of limb dominance and movement direction upon global synkinesis (GS). Twenty-two healthy young subjects (11 men, 11 women) with a mean age of 24.7 years participated in this study. Three trials of EMG activities from eight primary muscles in the unexercised limb were recorded when a maximal isometric contraction in various directions was performed by the shoulder, elbow, and wrist of the dominant and non-dominant upper limbs. The features of GS, including intensity and spatial representation, were quantified with standardized net excitation levels (SNE) and relative excitation (RE), respectively. Our data indicated that (1) GS intensity was strongly limb-dependent with a larger SNE level arising when target joints of the non-dominant upper limb were active, (2) the GS intensity was more influenced by movement direction of the non-dominant limb than by that of the dominant limb, (3) the gradient change in GS intensity was observed bilaterally with a larger SNE level associated with contralateral movements of a proximal joint than a distal joint, and (4) GS spatial representations of the upper limbs were patterned and symmetrical, but seemly insensitive to movement direction. Laterality in GS intensity and structured GS spatial representation with symmetry could be a consequence of use-dependent hemispheric organization.  相似文献   

8.
9.
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait.  相似文献   

10.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control.  相似文献   

11.
Recovery from a large perturbation, such as a slip, can be successful when stability of movement can be reestablished with protective stepping. Nevertheless, one dilemma for executing a protective step is that its liftoff can weaken support against limb collapse. This study investigated whether failures in limb support leading to falls after a protective step result from insufficient joint moment generation, and whether such insufficiency is greater among older fallers. A novel, unexpected slip was induced immediately following seat-off during a sit-to-stand. Joint work and mechanical energy were calculated for 43 young (9 falls, 34 recoveries) and 22 older (13 falls, 9 recoveries) adults who responded with a protective step. Comparisons of the work produced at three joints of the bilateral lower limbs revealed that insufficient concentric knee and hip extensor work prior to step liftoff was a primary differentiating factor between falling and recovery, regardless of age. Also, during stepping, fallers regardless of age failed to limit the eccentric knee extensor work at their stance limb sufficiently to retard rapid knee flexion and the consequent potential energy loss. We concluded that young and older fallers had comparable weak limb support. The greater fall incidence among the older adults likely resulted from a greater proportion of subjects who responded to the slip with insufficient knee extensor support, possibly attributable to age-differences in chair-rising. One strategy to address this dilemma may rely on task-specific training to enhance feedforward control that improves movement stability, and thus lessens the reliance on protective stepping.  相似文献   

12.
The shoulder complex (SC) consists of joints with little congruence and its active and passive structures ensure its stability. Stability of the SC rotation centre during upper arm movements can be estimated through the analysis of Helical Axes (HAs) dispersion.The aim of this study was to describe shoulder HAs dispersion during upper limb movements performed with dominant and non-dominant arms by young and elderly subjects. Forty subjects participated in the study (20 young: age 24.8 ± 2.8 years and 20 elderly: age 71.7 ± 6.3 years). Subjects were asked to perform four cycles of 15 rotations, flexions, elevations and abductions with one arm at a time at constant speed. Reflective markers were placed on participants’ arms and trunk in order to detect movements and the HAs dispersion with an optoelectronic system. Mean Distance (MD) from the HAs barycenter and Mean Angle (MA) were used as HAs dispersion indexes. Young subjects showed significant lower MD compared to the elderly during all motion ranges of rotation, flexion and elevation (p < 0.001). Moreover, the MD was lower in the dominant arm compared to the contralateral for rotation (p = 0.049) and flexion (p = 0.019). The results may be due to joint degeneration described in elderly subjects and differences in neuromuscular control of SC stability.  相似文献   

13.
The purpose of this study was to compare lower limb muscle activity during whole-body vibration (WBV) exercise between a young and an older study population. Thirty young (25.9±4.3 yrs) and thirty older (64.2±5.3 yrs) individuals stood on a side-alternating WBV platform while surface electromyography (sEMG) was measured for the tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus lateralis (VL), vastus medialis (VM), and biceps femoris (BF). The WBV protocol included nine vibration settings consisting of three frequencies (6, 11, 16 Hz) x three amplitudes (0.9, 2.5, 4.0 mm), and three control trials without vibration (narrow, medium, wide stance). The vertical platform acceleration (peak values of maximal displacement from equilibrium) was quantified during each vibration exercise using an accelerometer. The outcomes of this study showed that WBV significantly increased muscle activity in both groups for most vibration conditions in the TA (averaged absolute increase: young: +3.9%, older: +18.4%), GM (young: +4.1%, older: +9.5%), VL (young: +6.3%, older: +12.6%) and VM (young: +5.4%, older: +8.0%), and for the high frequency-amplitude combinations in the SOL (young: +7.5%, older: +12.6%) and BF (young: +1.9%, older: +7.5%). The increases in sEMG activity were significantly higher in the older than the young adults for all muscles, i.e., TA (absolute difference: 13.8%, P<0.001), GM (4.6%, P=0.034), VL (7.6%, P=0.001), VM (6.7%, P=0.042), BF (6.4%, P<0.001), except for the SOL (0.3%, P=0.248). Finally, the vertical platform acceleration was a significant predictor of the averaged lower limb muscle activity in the young (r=0.917, P<0.001) and older adults (r=0.931, P<0.001). In conclusion, the older population showed greater increases in lower limb muscle activity during WBV exercise than their young counterparts, meaning that they might benefit more from WBV exercises. Additionally, training intensity can be increased by increasing the vertical acceleration load.  相似文献   

14.
Practitioners training the older adult may benefit from a low-cost, easy-to-administer field test of upper body power. This study evaluated validity and reliability of the seated medicine ball throw (SMBT) in older adults. Subjects (n = 33; age 72.4 ± 5.2 years) completed 6 trials of an SMBT in each of 2 testing days and 2 ball masses (1.5 and 3.0 kg). Subjects also completed 6 trials of an explosive push-up (EPU) on a force plate over 2 testing days. Validity was assessed via a Pearson Product-Moment correlation (PPM) between SMBT and EPU maximal vertical force. Reliability of the SMBT was determined using PPMs (r), Intraclass correlation (ICC, R) and Bland-Altman plots (BAPs). For validity, the association between the SMBT and the EPU revealed a PPM of r = 0.641 and r = 0.614 for the 1.5- and 3.0-kg medicine balls, respectively. Test-retest reliability of the 1.5- and 3.0-kg SMBT was r = 0.967 and r = 0.958, respectively. The ICC values of the 1.5- and 3.0-kg SMBT were R = 0.994 and 0.989, respectively. The BAPs revealed 94% of the differences between day 1 and 2 scores were within the 95% confidence interval of the mean difference. Test-retest reliability for the EPU was r = 0.944, R = 0.969. The BAPs showed 94% of the differences between day 1 and 2 scores were within the 95% confidence interval of the mean difference, for both medicine ball throws. In conclusion, for the older adult, the SMBT appears to be highly reliable test of upper body power. Its validity relative to the maximal force exerted during the EPU is modest. The SMBT is an inexpensive, safe, and repeatable measure of upper body power for the older adult.  相似文献   

15.
Fall-related wrist fractures are common at any age. We used a seven-link, sagittally symmetric, biomechanical model to test the hypothesis that systematically alterations in the configuration of the body during a forward fall from standing height can significantly influence the impact force on the wrists. Movement of each joint was accomplished by a pair of agonist and antagonist joint muscle torque actuators with assigned torque-angle, torque-velocity, and neuromuscular latency properties. Proportional-derivative joint controllers were used to achieve desired target body segment configurations in the pre- andor postground contact phases of the fall. Outcome measures included wrist impact forces and whole-body kinetic energy at impact in the best, and worst, case impact injury risk scenarios. The results showed that peak wrist impact force ranged from less than 1 kN to more than 2.5 kN, reflecting a fourfold difference in whole-body kinetic energy at impact (from less than 40 J to more than 160 J) over the range of precontact hip and knee joint angles used at impact. A reduction in the whole-body kinetic energy at impact was primarily associated with increasing negative work associated with hip flexion. Altering upper extremity configuration prior to impact significantly reduced the peak wrist impact force by up to 58% (from 919 N to 2212 N). Increased peak wrist impact forces associated greater shoulder flexion and less elbow flexion. Increasing postcontact arm retraction can reduce the peak wrist impact force by 28% (from 1491 N to 1078 N), but postcontact hip and knee rotations had a relatively small effect on the peak wrist impact force (8% reduction; from 1411 N to 1303 N). In summary, the choice of the joint control strategy during a forward fall can significantly affect the risk of wrist injury. The most effective strategy was to increase the negative work during hip flexion in order to dissipate kinetic energy thereby reducing the loss in potential energy prior to first impact. Extended hip or elbow configurations should be avoided in order to reduce forearm impact forces.  相似文献   

16.
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject’s upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks.  相似文献   

17.
Computer display height and desk design are believed to be important workstation features and are included in international standards and guidelines. However, the evidence base for these guidelines is lacking a comparison of neck/shoulder muscle activity during computer and paper tasks and whether forearm support can be provided by desk design. This study measured the spinal and upper limb muscle activity in 36 young adults whilst they worked in different computer display, book and desk conditions. Display height affected spinal muscle activity with paper tasks resulting in greater mean spinal and upper limb muscle activity. A curved desk resulted in increased proximal muscle activity. There was no substantial interaction between display and desk.  相似文献   

18.
The current study examined the effects of whole-body vibration (WBV) on upper and lower body muscle activity during static muscle contractions (squat and bicep curls). The use of WBV accessories such as hand straps attached to the platform and a soft surface mat were also evaluated. Surface electromyography (sEMG) was measured for the medial gastrocnemius (MG), vastus lateralis (VL), and biceps brachii (BB) muscles in fourteen healthy older adults (74.8±4.5 years; mean±SD) with a WBV stimulus at an acceleration of 40 m s(-2) (30 Hz High, 2.5 mm or 46 Hz Low, 1.1 mm). WBV increased lower body (VL and MG) sEMG vs baseline (no WBV) though this was decreased with the use of the soft mat. The addition of the bicep curl with hand straps had no effect on lower body sEMG. WBV also increased BB sEMG vs baseline which was further increased when using the hand straps. There was no upper body effect of the soft mat. This study demonstrates WBV increases both lower and upper body muscle activity in healthy older adults. Moreover, WBV accessories such as hand straps attached to the platform or a soft surface mat may be used to alter exercise intensity.  相似文献   

19.
Twenty-three girls and 19 boys performed the handgrip and standing long jump (SLJ) tests. Their total forearm and leg volumes were calculated from circumference and length measurements and the lean volumes (bone + muscle) were calculated by making allowance for skinfold thickness. Although the boys were older than the girls (12.8 and 12.4 years), there was no significant difference in their heights or body masses. The absolute performances of the boys were superior to those of the girls in both tests (handgrip 234 and 205 N and SLJ 1.53 and 1.34 m), but when jumping performance was expressed as distance x body mass, there was no significant difference. In both tests, performance in terms of unit lean limb volume showed no significant gender difference. When performance was related to lean limb volume, both boys and girls showed a linear relationship in the two tests, with no significant difference between them. This absence of a gender difference contrasts with the results of a previous study on young adults and comparison shows that the relationships between lean limb volume and performance in the two tests for both boys and girls lie just below those of the young, adult females. The difference between the girls and the young adult females was just significant in the handgrip (p less than 0.05), but not significant in the SLJ (p greater than 0.25), whereas the differences between the boys and young adult males were significant (p less than 0.01) in both tests. Thus it would appear that a gender difference in the performance of skeletal muscle develops during adolescence and possible contributory factors are discussed.  相似文献   

20.
体成分指的是身体脂肪、蛋白质、肌肉、水等含量在体质量中所占的百分比.各成分之间的合理比例,对于维持机体的正常运行,十分重要.因此身体成分的研究一直是国内外研究的热点.体成分存在着人种和民族差异,因此它也是人类学研究的重要课题.目前的研究主要集中在中国青少年、大学生的体成分及体成分与其他身体指标的关系,而对于土家族的研究...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号