首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylan is a major component of the plant cell wall and the most abundant noncellulosic component in the secondary cell walls that constitute the largest part of plant biomass. Dicot glucuronoxylan consists of a linear backbone of β(1,4)-linked xylose residues substituted with α(1,2)-linked glucuronic acid (GlcA). Although several genes have been implicated in xylan synthesis through mutant analyses, the biochemical mechanisms responsible for synthesizing xylan are largely unknown. Here, we show evidence for biochemical activity of GUX1 (for GlcA substitution of xylan 1), a member of Glycosyltransferase Family 8 in Arabidopsis (Arabidopsis thaliana) that is responsible for adding the glucuronosyl substitutions onto the xylan backbone. GUX1 has characteristics typical of Golgi-localized glycosyltransferases and a K(m) for UDP-GlcA of 165 μm. GUX1 strongly favors xylohexaose as an acceptor over shorter xylooligosaccharides, and with xylohexaose as an acceptor, GlcA is almost exclusively added to the fifth xylose residue from the nonreducing end. We also show that several related proteins, GUX2 to GUX5 and Plant Glycogenin-like Starch Initiation Protein6, are Golgi localized and that only two of these proteins, GUX2 and GUX4, have activity as xylan α-glucuronosyltransferases.  相似文献   

2.
The isolation, purification, and partial characterization of a glucuronoarabinoxylan, a previously unobserved component of the primary cell walls of dicotyledonous plants, are described. The glucuronoarabinoxylan constitutes approximately 5% of the primary walls of suspension-cultured sycamore cells. This glucuronoarabinoxylan possesses many of the structural characteristics of analogous polysaccharides that have been isolated from the primary and secondary cell walls of monocots as well as from the secondary cell walls of dicots. The glucuronoarabinoxylan of primary dicot cell walls has a linear beta-1,4-linked d-xylopyranosyl backbone with both neutral and acidic sidechains attached at intervals along its length. The acidic sidechains are terminated with glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral sidechains are composed of arabinosyl and/or xylosyl residues.  相似文献   

3.

Main conclusion

Xylans in the cell walls of monocots are structurally diverse. Arabinofuranose-containing glucuronoxylans are characteristic of commelinids. However, other structural features are not correlated with the major transitions in monocot evolution. Most studies of xylan structure in monocot cell walls have emphasized members of the Poaceae (grasses). Thus, there is a paucity of information regarding xylan structure in other commelinid and in non-commelinid monocot walls. Here, we describe the major structural features of the xylans produced by plants selected from ten of the twelve monocot orders. Glucuronoxylans comparable to eudicot secondary wall glucuronoxylans are abundant in non-commelinid walls. However, the α-d-glucuronic acid/4-O-methyl-α-d-glucuronic acid is often substituted at O-2 by an α-l-arabinopyranose residue in Alismatales and Asparagales glucuronoxylans. Glucuronoarabinoxylans were the only xylans detected in the cell walls of five different members of the Poaceae family (grasses). By contrast, both glucuronoxylan and glucuronoarabinoxylan are formed by the Zingiberales and Commelinales (commelinids). At least one species of each monocot order, including the Poales, forms xylan with the reducing end sequence -4)-β-d-Xylp-(1,3)-α-l-Rhap-(1,2)-α-d-GalpA-(1,4)-d-Xyl first identified in eudicot and gymnosperm glucuronoxylans. This sequence was not discernible in the arabinopyranose-containing glucuronoxylans of the Alismatales and Asparagales or the glucuronoarabinoxylans of the Poaceae. Rather, our data provide additional evidence that in Poaceae glucuronoarabinoxylan, the reducing end xylose residue is often substituted at O-2 with 4-O-methyl glucuronic acid or at O-3 with arabinofuranose. The variations in xylan structure and their implications for the evolution and biosynthesis of monocot cell walls are discussed.
  相似文献   

4.
Xylan, the major hemicellulosic polysaccharide in Arabidopsis secondary cell walls, requires a number of glycosyltransferases (GT) to catalyse formation of the various glycosidic linkages found in the polymer. In this study, we characterized IRX10 and IRX10-like ( IRX10-L ), two highly homologous genes encoding members of the glycosyltransferase family 47 (GT47). T-DNA insertions in IRX10 gave a mild irregular xylem (irx) phenotype consistent with a minor defect in secondary cell-wall synthesis, whereas plants containing mutations in IRX10-L showed no change. However, irx10 irx10-L double mutant plants showed a much more severe irx and whole-plant phenotype, suggesting considerable functional redundancy between these two genes. Detailed biochemical analysis of the irx10 irx10-L double mutant showed a large reduction of xylan in the secondary cell walls, consistent with a specific defect in xylan biosynthesis. Furthermore, the irx10 irx10-L mutant retains the unique oligosaccharide found at the reducing end of Arabidopsis xylan, but shows a severe reduction in β(1,4) xylosyltransferase activity. These characteristics are similar to those of irx9 and irx14 , mutants that are believed to be defective in xylan chain elongation, and suggests that IRX10 and IRX10-L also play a role in elongation of the xylan backbone.  相似文献   

5.
Rhamnogalacturonan-II (RG-II) is a complex plant cell wall polysaccharide that is composed of an α(1,4)-linked homogalacturonan backbone substituted with four side chains. It exists in the cell wall in the form of a dimer that is cross-linked by a borate di-ester. Despite its highly complex structure, RG-II is evolutionarily conserved in the plant kingdom suggesting that this polymer has fundamental functions in the primary wall organisation. In this study, we have set up a bioinformatics strategy aimed at identifying putative glycosyltransferases (GTs) involved in RG-II biosynthesis. This strategy is based on the selection of candidate genes encoding type II membrane proteins that are tightly coexpressed in both rice and Arabidopsis with previously characterised genes encoding enzymes involved in the synthesis of RG-II and exhibiting an up-regulation upon isoxaben treatment. This study results in the final selection of 26 putative Arabidopsis GTs, including 10 sequences already classified in the CAZy database. Among these CAZy sequences, the screening protocol allowed the selection of α-galacturonosyltransferases involved in the synthesis of α4-GalA oligogalacturonides present in both homogalacturonans and RG-II, and two sialyltransferase-like sequences previously proposed to be involved in the transfer of Kdo and/or Dha on the pectic backbone of RG-II. In addition, 16 non-CAZy GT sequences were retrieved in the present study. Four of them exhibited a GT-A fold. The remaining sequences harbored a GT-B like fold and a fucosyltransferase signature. Based on homologies with glycosyltransferases of known functions, putative roles in the RG-II biosynthesis are proposed for some GT candidates.  相似文献   

6.
Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved β-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.  相似文献   

7.
Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs.  相似文献   

8.
The major polysaccharides in dicot wood biomass are cellulose and xylan. Although wood-associated cellulose synthase genes responsible for cellulose biosynthesis have been characterized, wood-associated xylan synthase genes have not been biochemically identified. A recent report by Lee et al. (2012) provides the first biochemical evidence that two functionally non-redundant Arabidopsis GT43 members are xylosyltransferases (XylTs) that function cooperatively in the elongation of the xylan backbone. We further extend this finding in the current report demonstrating that two poplar (Populus trichocarpa) GT43 glycosyltransferases, PtrGT43B and PtrGT43C, are xylan XylTs involved in wood formation. We show that microsomes from transgenic tobacco BY2 cells coexpressing PtrGT43B and PtrGT43C exhibited a high XylT activity capable of generating β-(1,4)-linked xylooligosaccharides, whereas little XylT activity was detected in microsomes with expression of PtrGT43B or PtrGT43C alone. These findings indicate that poplar GT43 members are XylTs that act cooperatively in catalyzing the successive transfer of xylosyl residues during xylan backbone biosynthesis, which provides further support of the hypothesis that the biochemical functions of GT43 members in vascular plants are evolutionarily conserved.  相似文献   

9.
Two rat monoclonal antibodies have been generated to plant cell wall (1-->4)-beta-D-xylans using a penta-1,4-xylanoside-containing neoglycoprotein as an immunogen. The monoclonal antibodies, designated LM10 and LM11, have different specificities to xylans in relation to the substitution of the xylan backbone as indicated by immunodot assays and competitive-inhibition ELISAs. LM10 is specific to unsubstituted or low-substituted xylans, whereas LM11 binds to wheat arabinoxylan in addition to unsubstituted xylans. Immunocytochemical analyses indicated the presence of both epitopes in secondary cell walls of xylem but differences in occurrence in other cell types.  相似文献   

10.
Arabidopsis IRX10 and IRX10-LIKE (IRX10-L) proteins are closely related members of the GT47 glycosyltransferase family. Single gene knock-outs of IRX10 or IRX10-L result in plants with either a weak or no mutant phenotype. However irx10 irx10-L double mutants are severely affected in their development, with a reduced rosette size and infrequent formation of a small infertile inflorescence. Plants homozygous for irx10 and heterozygous for irx10-L have an intermediate phenotype exhibiting a short inflorescence compared with the wild type, and an almost complete loss of fertility. Stem sections of the irx10 homozygous irx10-L heterozygous or irx10 irx10-L double mutants show decreased secondary cell-wall formation. NMR analysis shows that signals derived from the reducing end structure of glucuronoxylan were detected in the irx10 single mutant, and in the irx10 homozygous irx10-L heterozygous combination, but that the degree of polymerization of the xylan backbone was reduced compared with the wild type. Additionally, xylans from irx10 stem tissues have an almost complete loss of the GlcUA side chain, whereas the level of 4- O -Me-GlcUA was similar to that in wild type. Deletion of the predicted signal peptide from the N terminus of IRX10 or IRX10-L results in an inability to rescue the irx10 irx10-L double mutant phenotype. These findings demonstrate that IRX10 and IRX10-L perform a critical function in the synthesis of glucuronoxylan during secondary cell-wall formation, and that this activity is associated with the formation of the xylan backbone structure. This contrasts with the proposed function of the tobacco NpGUT1, which is closely related to the Arabidopsis IRX10 and IRX10-L proteins, in rhamnogalacturonan II biosynthesis.  相似文献   

11.
Xylans are major components of land plant secondary cell walls and are required for normal plant growth and development. Secondary walls also account for the bulk of lignocellulosic biomass, a potential feedstock for large-scale production of biofuels. Glucuronoxylan and arabinoxylan affect the conversion of lignocellulosic biomass to fermentable sugar, a crucial and expensive step in biofuel production. Thus, knowledge of xylan biosynthesis may provide tools to modify secondary cell wall structure and thereby improve the bioprocessing characteristics of biomass. Recent studies have shown that glucuronoxylan structure and biosynthesis are far more complex than previously appreciated and the number of glycosyltransferases implicated in this process continues to increase. New hypotheses regarding the mechanisms of glucuronoxylan biosynthesis challenge some widely held views.  相似文献   

12.
Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.  相似文献   

13.
Secondary walls in vessels and fibers of dicotyledonous plants are mainly composed of cellulose, xylan, and lignin. Although genes involved in biosynthesis of cellulose and lignin have been intensively studied, little is known about genes participating in xylan synthesis. We found that Arabidopsis thaliana fragile fiber8 (fra8) is defective in xylan synthesis. The fra8 mutation caused a dramatic reduction in fiber wall thickness and a decrease in stem strength. FRA8 was found to encode a member of glycosyltransferase family 47 and exhibits high sequence similarity to tobacco (Nicotiana plumbaginifolia) pectin glucuronyltransferase. FRA8 is expressed specifically in developing vessels and fiber cells, and FRA8 is targeted to Golgi. Comparative analyses of cell wall polysaccharide fractions from fra8 and wild-type stems showed that the xylan and cellulose contents are drastically reduced in fra8, whereas xyloglucan and pectin are elevated. Further structural analysis of cell walls revealed that although wild-type xylans contain both glucuronic acid and 4-O-methylglucuronic acid residues, xylans from fra8 retain only 4-O-methylglucuronic acid, indicating that the fra8 mutation results in a specific defect in the addition of glucuronic acid residues onto xylans. These findings suggest that FRA8 is a glucuronyltransferase involved in the biosynthesis of glucuronoxylan during secondary wall formation.  相似文献   

14.
A new category of beta-(1----4)-xylan xylanohydrolases that exhibit a specific capacity to hydrolyze glucuronoxylans was characterized using heteroxylans prepared from Vigna (Vigna angularis Ohwi et Ohashi cv. Takara) and maize (Zea mays L.) cell walls together with appropriate derivatives as substrates. Glucuronopyranosyl moieties, as side chains, were prerequisite for enzyme-mediated hydrolysis of the beta-(1----4)-xylosyl linkages. The enzyme degraded glucuronoxylans derived from Vigna cell walls to yield a major oligomeric species (formula; see text) where Xyl represents xylose and GlcA represents glucuronic acid. The enzyme also degraded glucuronoarabinoxylans derived from maize cell walls to yield a major oligomeric species containing a single glucuronosyl side chain and a single unsubstituted beta 1----4Xyl pendant terminal. These results indicate that this xylanohydrolase recognizes glucuronosyl moieties inserted as monomeric side chains along the xylan backbone and mediates the hydrolysis of the beta-(1----4)-xylosyl linkage of the adjacent unsubstituted xylosyl residue in heteroxylans. This enzyme is the first xylanohydrolase identified that recognizes distinctly different sugars constituting side chains. We propose to designate this new enzyme as a glucuronoxylan xylanohydrolase to be abbreviated as glucuronoxylanase. Use of this unique enzyme demonstrated the presence of repeating units in heteroxylans in cell walls of higher plants.  相似文献   

15.
β-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, β-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but β-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased β-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher β-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto β-1,4-galactopentaose. GALS1 specifically formed β-1,4-galactosyl linkages and could add successive β-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as β-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.  相似文献   

16.
《Carbohydrate research》1987,168(2):245-274
Rhamnogalacturonan I is a pectic polysaccharide that is solubilized from the walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of a highly purified endo-1,4-α-polygalacturonanase. Rhamnogalacturonan I has a linear backbone consisting of the diglycosyl repeating unit, →4)-α-d-GalpA-(1→2)-α-l-Rhap-(1→. Approximately half of the α-l-rhamnosyl residues of the backbone are branched at O-4. Selective cleavage at the galactosyluronic acid residues of the backbone by treatment of rhamnogalacturonan I wit lithium in ethylenediamine resulted in the release of the neutral glycosyl-residue sidechains that had been attached to the backbone. Various analytical techniques, including combined liquid chromatography-mass spectrometry, combined gas-liquid chromatography-mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy, were used to determine the structure of the side chains. The majority of the sidechains were isolated as oligoglycosylalditols, with rhamnitol at the “reducing” end. Terminal 2-, 4-, or 6-linked galactosyl residues were found attached to O-4 of the rhamnitol residues The 2-, 4-, and 6-linked galactosyl residues had terminal or 2-linked arabinosyl, or additional galactosyl, residues attached to them. Based on the results of fast-atom-bombardment mass spectrometry, the side chains were found to range in size from one to fourteen glycosyl residues. The side-chain structures suggest that there are four or more distinct families of side chains attached to the backbone of rhamnogalacturonan I.  相似文献   

17.
Xylans are known to be major cellulose-linking polysaccharides in secondary cell walls in higher plants. We used two monoclonal antibodies (LM10 and LM11) for a comparative immunocytochemical analysis of tissue and cell distribution of xylans in a number of taxa representative of all major tracheophyte and bryophyte lineages. The results show that xylans containing the epitopes recognized by LM10 and LM11 are ubiquitous components of secondary cell walls in vascular and mechanical tissues in all present-living tracheophytes. In contrast, among the three bryophyte lineages, LM11 binding was detected in specific cell-wall layers in pseudoelaters and spores in the sporophyte of hornworts, while no binding was observed with either antibody in the gametophyte or sporophyte of liverworts and mosses. The ubiquitous occurrence of xylans containing LM10 and LM11 epitopes in tracheophytes suggests that the appearance of these polysaccharides has been a pivotal event for the evolution of highly efficient vascular and mechanical tissues. LM11 binding in the sporophyte of hornworts, indicating the presence of relatively highly substituted xylans (possibly arabinoxylans), separates these from the other bryophytes and is consistent with recent molecular data indicating a sister relationship of the hornworts with tracheophytes.  相似文献   

18.
Towards the mechanism of cellulose synthesis   总被引:9,自引:0,他引:9  
Recent research has provided insights into how plants make cellulose - the major structural material of their cell walls and the basis of the cotton and wood fibre industries. Arabidopsis thaliana mutants impaired in cellulose production are defective in genes encoding membrane-bound glycosyltransferases, an endo-1,4-beta-glucanase and several enzymes involved in the N-glycosylation and quality-control pathways of the endoplasmic reticulum. The glycosyltransferases form the rosette terminal complexes seen in plasma membranes making cellulose. Synthesis might start by making lipoglucans, which, in turn, might form the substrate for the endo-1,4-beta-glucanase, before being elongated to form the long, crystalline microfibrils that assemble in the cell wall.  相似文献   

19.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

20.
Xylan, cellulose and lignin are the three major components of secondary walls in wood, and elucidation of the biosynthetic pathway of xylan is of importance for potential modification of secondary wall composition to produce wood with improved properties. So far, three Arabidopsis glycosyltransferases, FRAGILE FIBER8, IRREGULAR XYLEM8 and IRREGULAR XYLEM9, have been implicated in glucuronoxylan (GX) biosynthesis. In this study, we demonstrate that PARVUS, which is a member of family GT8, is required for the biosynthesis of the tetrasaccharide primer sequence, beta-D-Xyl-(1 --> 3)-alpha-l-Rha-(1 --> 2)-alpha-D-GalA-(1 --> 4)-D-Xyl, located at the reducing end of GX. The PARVUS gene is expressed during secondary wall biosynthesis in fibers and vessels, and its encoded protein is predominantly localized in the endoplasmic reticulum. Mutation of the PARVUS gene leads to a drastic reduction in secondary wall thickening and GX content. Structural analysis of GX using (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the parvus mutation causes a loss of the tetrasaccharide primer sequence at the reducing end of GX and an absence of glucuronic acid side chains in GX. Activity assay showed that the xylan xylosyltransferase and glucuronyltransferase activities were not affected in the parvus mutant. Together, these findings implicate a possible role for PARVUS in the initiation of biosynthesis of the GX tetrasaccharide primer sequence and provide novel insights into the mechanisms of GX biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号