首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time an interaction between aspartate transaminase (EC 2.6.1.1.) from chicken heart cytosol and the substrates and their analogues has been investigated by means of circular dichroism and absorption spectra (at pH 5,0-8,0 range). The asymmetry factor of the native enzyme and the enzymes--substrate intermediates was found. The results obtained were explained in terms of changes of the enzyme's active site conformation.  相似文献   

2.
Howard Thomas 《Planta》1978,142(2):161-169
During the senescence of Lolium temulentum leaf sections in the dark, asparagine and glutamine accumulated as the level of soluble protein declined. During the first 3–4 days after detachment, when the rate of protein loss was maximal, a four-fold increase in acid protease activity (EC 3.4.4.?) occurred. Subsequently this activity was replaced by proteases with a higher pH optimum. There was also a pronounced and continued activation of glutamate dehydrogenase (EC 1.4.1.2) during senescence. Glutamate pyruvate transaminase (EC 2.6.1.2), benzoylarginine-p-nitroanilide hydrolase (EC 3.4.?.?) and leucyl-p-nitroanilide hydrolase (EC 3.4.1.1) declined from high initial activities after 3–4 days. Glutamate oxaloacetate transaminase (GOT, EC 2.6.1.1) was fairly stable although a marked increase occurred in the activity of one of two major GOT isoenzymes over the first two days. Glutamine synthetase (EC 6.3.1.2) was highly active in non-senescent leaves but fell sharply during the first three days of senescence. Little asparagine synthetase (EC 6.3.1.1) was detected. The role of these enzymes in the nitrogen metabolism of senescent detached leaves is discussed.  相似文献   

3.
Adaptation of Ehrlich ascites tumor cells to serial cultivation in media with progressively elevated (hypertonic) NaCl content ("high NaCl"-tolerant cells) has resulted in progressive increases of the cellular activities of NAD-dependent glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), NAD-dependent malate dehydrogenase (EC 1.1.1.37), glutamate--oxalacetate transaminase (EC 2.6.1.1), NAD (P)-dependent glutamate dehydrogenase (EC 1.4.1.3), NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42). The activities of glutamate-pyruvate transaminase (EC 2.6.1.2.) and of glycolytic enzymes as phospho-fructokinase (EC 2.7.1.11), glyceraldehydephosphate dehydrogenase (EC 1.2.1.12) and lactate dehydrogenase (EC 1.1.1.27) were only slightly and not in progressive manner (in response to the progressive increase of the environmental NaCl concentration) affected. These changes are discussed with respect to a metabolic pattern of these "high NaCl"-tolerant cells which is compatible with increased energy requirements, especially for active cation transport. It is suggested that these increased cellular enzyme activities reflect an increased transfer of reducing equivalents across mitochondrial membranes (via the "glycerophosphate cycle and the malate-aspartate shuttle") and possibly a stimulated lipid metabolism. These alterations in the level of enzyme activities must be regarded asan adaptive cellular response to the "high NaCl" environment, since readaptation to growth in regular isotonic media resulted in a reversion to the enzyme pattern characteristic of the parent cells.  相似文献   

4.
Adaptation of Ehrlich ascites tumor cells to serial cultivation in media with progressively elevated (hypertonic) NaCl content (“high NaCl”-tolerant cells) has resulted in progressive increases of the cellular activities of NAD-dependent glycerol-3-phosohate dehydrogenase (EC 1.1.1.8), NAD-dependent malate dehydrogenase (EC 1.1.1.37), glutamate—oxalacetate transaminase (EC 2.6.1.1.), NAD(P)-dependent glutamate dehydrogenase (EC 1.4.1.3), NADP-dependent malate dehydrogenase (EC 1.1.1.40, “malic enzyme”) and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42). The activities of glutamate—pyruvate transaminase (EC 2.6.1.2.) and of glycolytic enzymes as phosphofructokinase (EC 2.7.1.11), glyceradehydephosphate dehydrogenase (EC 1.2.1.12) and lactate dehydrogenase (EC 1.1.1.27) were only slightly and not in progressive manner (in response to the progressive increase of the environmental NaCl concentration) affected. These changes are discussed with respect to a metabolic pattern of these “high NaCl”-tolerant cells which is compatible with increased energy requirements, especially for active cation transport. It is suggested that these increased cellular enzyme activitees reflect an increased transfer of reducing equivalents across mitochondrial membranes (via the “glycerophosphate cycle and the malate—aspartate shuttle”) and possibly a stimulated lipid metabolism. These alterations in the level of enzyme activities must be regarded as an adaptive cellular response to the “high NaCl” enviromment, since readaptation to growth in regular isotonic media resulted in a reversion to the enzyme pattern characteristic of the parent cells.  相似文献   

5.
The extent of the hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat was determined by following changes in histochemistry, and the activities of glutamate-oxaloacetate transaminase (EC 2.6.1.1) and glutamate-pyruvate transaminase (EC 2.6.1.2) in serum. Administration of N-hydroxy-2-acetylaminofluorene (120 μmol/kg i.v.) cased a periportal (zone I) necrosis which was accompanied by a large increase in glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activity in serum. Treatment of rats with pentachlorophenol and 2, 6-dichloro-4-nitrophenol, known inhibitors of NO-sulfation, 45 min before the administration of N-hydroxy-2-acetylaminofluorene, completely prevented the hepatotoxic effects of this carcinogenic hydroxamic acid. Therefore, it is concluded that NO-sulfation is responsible for the hepatotoxic action of N-hydroxy-2-acetylaminofluorene.  相似文献   

6.
K Bartsch  R Schneider    A Schulz 《Applied microbiology》1996,62(10):3794-3799
We have isolated and characterized an aspartate transaminase (glutamate:oxalacetate transaminase, EC 2.6.1.1) from the thermophilic microorganism Bacillus stearothermophilus. The purified enzyme has a molecular mass of 40.5 kDa by sodium dodecyl sulfate gel analysis, a temperature optimum of 95 degrees C, and a pH optimum of 8.0. The corresponding gene, aspC, was cloned and overexpressed in Escherichia coli. The recombinant glutamate:oxalacetate transaminase protein was used in immobilized form together with 4-aminobutyrate:2-ketoglutarate transaminase (EC 2.6.1.19) from E. coli for the production of L-phosphinothricin [L-homoalanin-4-yl-(methyl)phosphinic acid], the active ingredient of the herbicide Basta (AgrEvo GmbH), from its nonchiral 2-keto acid precursor 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO). In this new coupled process conversion rates of ca. 85% were obtained with substrate solutions containing 10% PPO by using only slight excesses of the amino donors glutamate and aspartate. The contamination of the reaction broth with amino acid by-products was < 3%.  相似文献   

7.
To elucidate the role of shear stress in fluid-phase endocytosis of vascular endothelial cells (EC), we used a rotating-disk shearing apparatus to investigate the effects of shear stress on the uptake of lucifer yellow (LY) by cultured bovine aortic endothelial cells (BAEC). Exposure of EC to shear stress (area-mean value of 10 dynes/cm2) caused an increase in LY uptake that was abrogated by the antioxidant, N-acetyl-L-cysteine (NAC), the NADPH oxidase inhibitor, acetovanillone, and two inhibitors of protein kinase C (PKC), calphostin C and GF109203X. These results suggest that fluid-phase endocytosis is regulated by both reactive oxygen species (ROS) and PKC. Shear stress increased both ROS production and PKC activity in EC, and the increase in ROS was unaffected by calphostin C or GF109203X, whereas the activation of PKC was reduced by NAC and acetovanillone. We conclude that shear stress-induced increase in fluid-phase endocytosis is mediated via ROS generation followed by PKC activation in EC.  相似文献   

8.
Endothelial migration is a crucial aspect of a variety of physiologic and pathologic conditions including atherosclerosis and vascular repair. Reactive oxygen species (ROS) function as second messengers during endothelial migration. Multiple intracellular sources of ROS are regulated by cellular context, external stimulus, and the microenvironment. However, the predominant source of ROS during endothelial cell (EC) migration and the mechanisms by which ROS regulate cell migration are incompletely understood. In this study, we tested the hypothesis that mitochondria-derived ROS (mtROS) regulate EC migration. In cultured human umbilical vein endothelial cells, VEGF increased mitochondrial metabolism, promoted mtROS production, and induced cell migration. Either the targeted mitochondrial delivery of the antioxidant, vitamin E (Mito-Vit-E), or the depletion of mitochondrial DNA abrogated VEGF-mediated mtROS production. Overexpression of mitochondrial catalase also inhibited VEGF-induced mitochondrial metabolism, Rac activation, and cell migration. Furthermore, these interventions suppressed VEGF-stimulated EC migration and blocked Rac1 activation in endothelial cells. Constitutively active Rac1 reversed Mito-Vit-E-induced inhibition of EC migration. Mito-Vit-E also attenuated carotid artery reendothelialization in vivo. These results provide strong evidence that mtROS regulate EC migration through Rac-1.  相似文献   

9.
The relation between the activation (phosphorylation) state of pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12, and EC 1.6.4.3) and the rate of pyruvate oxidation has been examined in isolated, metabolically active, and tightly coupled mitochondria from rat cerebral cortex. With pyruvate and malate as the substrates, the activation state of PDHC decreased on addition of ADP, while the rates of oxygen uptake and 14CO2 formation from [1-14C]pyruvate increased. The lack of correlation between the activation state of PDHC and rate of pyruvate oxidation was seen in media containing 5, 30, or 100 mM KCl. Both the activation state of PDHC and pyruvate oxidation increased, however, when KCl was increased from 5 to 100 mM. Although the PDHC is inactivated by an ATP-dependent kinase (EC 2.7.1.99), direct measurement of ATP and ADP failed to show a consistent relationship between the activation state of PDHC and either ATP levels or ATP/ADP ratios. Comparison of the activation state of PDHC in uncoupled or oligomycin-treated mitochondria also failed to correlate PDHC activation state to adenine nucleotides. In brain mitochondria, unlike those from other tissues, the activation state of PDHC does not seem to be related clearly to the rate of pyruvate oxidation, or to the mitochondrial adenylate energy charge.  相似文献   

10.
Gaba shunt in developing soybean seeds is associated with hypoxia   总被引:9,自引:0,他引:9  
In the present study we investigated the proposal that the γ-aminobutyrate (Gaba) shunt in developing soybean (Glycine max [L.] Merr.) seeds is associated with hypoxia. The ontogeny and pH profile of enzymes associated with glutamate metabolism (glutamate decarboxylase [EC 4.1.1.15]. Gaba transaminase [EC 2.6.1.19], succinic semialdehyde dehydrogenase [EC 1.2.1.16], glutamate dehydrogenase [EC 1.4.1.2], glutamate:oxaloacetate transaminase [EC 2.6.1.1], glutamate:pyruvate transaminase [EC 2.6.1.2] and 2-oxoglutarate dehydrogenase complex [EC 1.2.4.2]) and hypoxia (alcohol dehydrogenase [ADH, EC 1.1.1.1] and pyruvate decarboxylase [PDC, EC 4.1.1.1]) were determined in cotyledons, nucellus and seed-coat tissues. Gaba-shunt enzymes were ubiquitous in the developing seed. Activities of enzymes catalyzing glutamate-C entry into the Krebs cycle via 2-oxoglutarate were generally greater than those of Gaba-shunt enzymes. In cotyledons, the activity of ADH increased throughout seed development (up to 72 days after anthesis [DAA]), whereas PDC was static during early development, then increased. In contrast, the activities of ADH and PDC in maternal tissues (nucellus and seed coat) were initially high, then declined dramatically after 37 DAA. The adenylate energy charge (AEC) = ([ATP]+0.5 [ADP])/ ([ATP] + [ADP] + [AMP]) of soybean seeds from fruits (37 DAA) frozen in situ was low (0.67±0.01) compared to the AEC of adjacent pod tissue (0.82 ± 0.04) and cotyledons exposed to air (0.84 ± 0.01). A 60-min time-course study showed that the rate of [U-14C]-glutamate catabolism by an intact excised cotyledon at 37 DAA was markedly lower at 8 and 0% O2 than at 21%; the pool size of [14C]-Gaba was unaffected. The data indicated that: (1) Gaba-shunt activity is not a response to limited glutamate deamination/transamination: (2) the soybean seed is hypoxic; and (3) the relative partitioning of glutamate-C through glutamate decarboxylase is increased by hypoxia.  相似文献   

11.
1. The apparent Michaelis constants of the glutamate dehydrogenase (EC 1.4.1.3), the glutamate-oxaloacetate transaminase (EC 2.6.1.1) and the glutaminase (EC 3.5.1.2) of rat brain mitochondria derived from non-synaptic (M) and synaptic (SM2) sources were studied. 2. The kinetics of oxygen uptake of both populations of mitochondria in the presence of a fixed concentration of malate and various concentrations of glutamate or glutamine were investigated. 3. In both mitochondrial populations, glutamate-supported respiration in the presence of 2.5 mM-malate appears to be biphasic, one system (B) having an apparent Km for glutamate of 0.25 +/- 0.04 mM (n=7) and the other (A) of 1.64 +/- 0.5 mM (n=7) [when corrected for low-Km process, Km=2.4 +/- 0.75 mM (n=7)]. Aspartate production in these experiments followed kinetics of a single process with an apparent Km for glutamate of 1.8-2 mM, approximating to the high-Km process. 4. Oxygen-uptake measurement with both mitochondrial populations in the presence of malate and various glutamate concentrations in which amino-oxyacetate was present showed kinetics approximating only to the low-Km process (apparent Km for glutamate approximately 0.2 mM). Similar experiments in the presence of glutamate alone showed kinetics approximating only to the high-Km process (apparent Km for glutamate approximately 1-1.3 mM). 5. Oxygen uptake supported by glutamine (0-3 mM) and malate (2.5 mM) by the free (M) mitochondrial population, however, showed single-phase kinetics with an apparent Km for glutamine of 0.28 mM. 6. Aspartate and 2-oxoglutarate accumulation was measured in 'free' nonsynaptic (M) brain mitochondria oxidizing various concentrations of glutamate at a fixed malate concentration. Over a 30-fold increase in glutamate concentration, the flux through the glutamate-oxaloacetate transaminase increased 7--8-fold, whereas the flux through 2-oxoglutarate dehydrogenase increased about 2.5-fold. 7. The biphasic kinetics of glutamate-supported respiration by brain mitochondria in the presence of malate are interpreted as reflecting this change in the relative fluxes through transamination and 2-oxoglutarate metabolism.  相似文献   

12.
Mansour MA 《Life sciences》2000,66(26):2583-2591
The effects of thymoquinone (TQ) and desferrioxamine (DFO) against carbon tetrachloride (CCl4)-induced hepatotoxicity were investigated. A single dose of CCl4 (20 microl/kg, i.p.) induced hepatotoxicity, manifested biochemically by significant elevation of activities of serum enzymes, such as alanine transaminase (ALT, EC: 2.6.1.2) , aspartate transaminase (AST, EC: 2.6.1.1) and lactate dehydrogenase (LDH, EC: 1.1.1.27). Hepatotoxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content, and catalase (EC: 1.11.1.6) activity in hepatic tissues and significant increase in hepatic lipid peroxidation measured as malondialdhyde (MDA). Pretreatment of mice with DFO (200 mg/kg i.p.) 1 h before CCl4 injection or administration of TQ (16 mg/kg/day, p.o.) in drinking water, starting 5 days before CCl4 injection and continuing during the experimental period, ameliorated the hepatotoxicity induced by CCl4, as evidenced by a significant reduction in the elevated levels of serum enzymes as well as a significant decrease in the hepatic MDA content and a significant increase in the total sulfhydryl content 24 h after CCl4 administration. In a separate in vitro assay, TQ and DFO inhibited the non-enzymatic lipid peroxidation of normal mice liver homogenate induced by Fe3+/ascorbate in a dose-dependent manner. These results indicate that TQ and DFO are efficient cytoprotective agents against CCl4-induced hepotoxicity, possibly through inhibition of the production of oxygen free radicals that cause lipid peroxidation.  相似文献   

13.
Glutamine transaminase (EC 2.6.1.15) has been purified 113 fold from bovine brain. The product is free of aspariate amino transferase (EC 2.6.1.1.) and other common transaminases. The enzyme shows a wide specificity similar to that reported from the same transaminase purified from bovine kidney and liver as regards both the amino donor and the amino acceptor. Of interest is the transamination and cyclization of l-cystathionine, l-lanthionine, l-cystine and S-aminoethylcysteine. The latter result indicates that the deamination and the cyclization of the sulfur containing diamino acids described for bovine liver and kidney enzyme is feasible also in the brain and suggests the possible endogenous origin of cyclothionine and thiomorpholine dicarboxylate recently detected in bovine brain.  相似文献   

14.
Abstract— A study was made of the effect of unilateral visual deprivation and stimulation upon the activities of glutamate decarboxylase (EC 4.1.1.15), GABA-α-ketoglutarate transaminase (EC 2.6.1.19). aspartate aminotransferase (EC 2.6.1.1) and hexokinase (EC 2.7.1.1) in the optic lobe of the adult pigeon ( Columba Livia ). Visual deprivation was achieved by eyelid suturing or by enucleation and maintained for 1–9 weeks. Unilateral visual stimulation was maintained for 75 min following 72 h in the dark. A small but significant increase was observed in the activities of glutamate decarboxylase and aspartate aminotransferase after unilateral visual stimulation and a decrease after unilateral enucleation. The activities of GABA-α-ketoglutarate transaminase and hexokinase decreased after unilateral visual stimulation and increased after enucleation. Unilateral eyelid suturing resulted in a significant reduction in the activity of glutamate decarboxylase and an increase in the activity of GABA-α-ketoglu-tarate transaminase. Hexokinase activity was, however, unchanged following unilateral eyelid suturing.  相似文献   

15.
The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit.  相似文献   

16.
The reactions of two analogues of 4-aminobutyrate, namely 4-aminohex-5-ynoate and 4-aminohex-5-enoate, with three transaminases were studied. Three pure enzymes were used, aminobutyrate transaminase (EC 2.6.1.19), ornithine transaminase (EC 2.6.1.13) and aspartate transaminase (EC 2.6.1.1), and the course of the reactions was studied by observing changes in the absorption spectrum of the bound coenzyme and by observing loss of activity. All of the enzymes were inactivated by either inhibitor, but amino-hexenoate showed a marked specificity for aminobutyrate transaminase. Aminohexynoate was most potent towards ornithine transaminase, and with this enzyme transamination of the inhibitor is an important factor in protecting the enzyme. Most of the reactions could be analysed as first order, with the observed rate constant showing a hyperbolic dependence on inhibitor concentration.  相似文献   

17.
Regional mapping of relative (14C)-glucose (GLU) uptake was analyzed in Balb/c mice at 3 time intervals (5 min., 1 hr., 3 hrs.) after either the first (Day 1) or the last (Day 9) daily sessions of a spatial discrimination testing procedure in an eight-arm radial maze. On Day 1, increased labelling was found 5 min. post-training in subcortical, hippocampal and cortical regions. Decreased GLU uptake was observed 1 hr. later in the same regions, followed at 3 hrs. post-training by a retarded activation in the above areas and particularly in thalamic and cortical structures. On Day 9, there was only an early (5 min.) post-training increase in metabolic activity followed by a subsequent monotonic decrease over 3 hrs. post-training period.  相似文献   

18.
The activity of branched chain amino acid transaminase (EC 2.6. 1.6) was found to be 8 to 10 times higher in rat stomach and pancreas than in heart and kidney, which were previously thought to be the tissues with the highest activity. For comparison, the activities of two other transaminases, aspartate transaminase (EC 2.6.1.1) and alanine transaminase (EC 2.6.1.2) in different parts of the digestive tract were measured. However, their activities were not especially high in the stomach and pancreas, and in the pancreas the activity of branched chain amino acid transaminase was higher than those of the two other transaminases. The isozyme of branched chain amino acid transaminase in the stomach and pancreas was identified as enzyme I by DEAE cellulose chromatography and immunochemistry. The rates of oxidation of [U-14C]-L-leucine by slices of stomach and pancreas were also higher than by slices of other tissues.  相似文献   

19.
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.  相似文献   

20.
Extracellular ATP Stimulates Norepinephrine Uptake in PC12 Cells   总被引:4,自引:3,他引:1  
This study examined the effects of extracellular ATP on norepinephrine (NE) uptake, using PC12 cells as a model of noradrenergic neurons. Previous experiments with synaptosomes led to the hypothesis that extracellular ATP can regulate NE uptake via an ecto-protein kinase. In the present study, we examined the high-affinity uptake of NE (referred to as uptake 1) in PC12 cells in the presence of varying concentrations of extracellular ATP. In the presence of Ca2+, low concentrations of ATP (0.1 microM) increased uptake 1 by approximately 36%. This increase could be mimicked by adenosine-5'-O-(3-thiotriphosphate) tetralithium salt (ATP gamma S), an analogue of ATP which can be utilized by protein kinases, and not by 5'-adenylylimidodiphosphate tetralithium salt, a nonhydrolyzable analogue of ATP, GTP, ADP, and adenosine also had no effect on uptake 1. Preincubation of the cells with NE and ATP gamma S, followed by washing and assaying NE uptake 30 min later, resulted in a persistent increase in uptake 1. Similar pretreatment with ATP did not show this increase; however, simultaneous pretreatment with ATP and ATP gamma S blocked the activation produced by ATP gamma S alone. Kinetic analysis showed that ATP gamma S pretreatment produces an increase in the Vmax of uptake 1 without altering the apparent Km for NE. These results support the hypothesis that extracellular ATP can regulate NE uptake via an ecto-protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号