首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of thrombopoiesis in rats is presented. This has four compartments; stem cells, megakaryocytes, thrombocytes and thrombopoietin. A high thrombopoietin concentration influences bone marrow proliferation in three ways. Firstly the stem cells are stimulated and a slow increase in megakaryocyte number follows. Secondly there are additional endomitoses in the (early) megakaryocytes resulting in an increase in megakaryocyte volume. Thirdly the megakaryocyte maturation time is shortened. The parameters of the model are determined from experimental values for the normal, maximum and minimum proliferation rates, maturation times and destruction rates. The model is tested by comparing simulated results for acute and chronic thrombocytopenia and thrombocytosis with experimental curves from the literature. The model and data agree within the limits of experimental error. Not all of the thrombopoietic regulatory system is known yet, so some important alternative hypotheses are investigated and compared with the model. Several hypotheses have been excluded in this way.  相似文献   

2.
The effects of interleukin-11 (IL-11) and thrombopoietin (TPO) on murine megakaryocytopoiesis were studied using a serum-free culture system. Acting alone, both IL-11 and TPO increased the number of acetylcholinesterase (AchE)(+)cells (megakaryocytes), the latter being more potent than the former. TPO, but not IL-11, increased the mean AchE activity per megakaryocyte (AchE activity/megakaryocyte). TPO increased both the number of megakaryocytes with high ploidy, and of those with low ploidy. In contrast, IL-11 increased only the number of megakaryocytes with high ploidy. The effect of TPO on megakaryocyte ploidy was stronger than that of IL-11. Both IL-11 and TPO increased the proportion of large megakaryocytes, but the latter was more potent than the former. While the stimulatory effects of IL-11 and TPO on the number of megakaryocytes were enhanced by IL-3 or stem cell factor (SCF), synergism of IL-11 or TPO with IL-3 or SCF in stimulating AchE activity/megakaryocyte was inconsistent. IL-11 and TPO stimulated the formation of colony-forming units of megakaryocyte in the presence of IL-3, but not alone, with similar maximum colony numbers for both cytokines. Our findings thus demonstrate that IL-11 principally stimulates megakaryocyte maturation rather than the proliferation of megakaryocytes, whereas TPO stimulates both.  相似文献   

3.
造血干细胞分化生成巨核细胞是一个十分复杂的过程,包括造血干细胞动员及其向巨核系祖细胞分化,巨核系祖细胞增殖、分化生成未成熟巨核细胞,巨核细胞的成熟和血小板释放等过程。研究发现,造血干细胞动员及其向各系细胞分化的大部分过程都在一种称为"龛"的结构中进行,多种龛内信号分子参与了造血干细胞的动员和分化调控。该文对造血干细胞龛内参与造血干细胞动员和分化生成巨核细胞的几种重要细胞因子及其调控作用进行综述。  相似文献   

4.
Thrombopoietin and its receptor (Mpl) support survival and proliferation in megakaryocyte progenitors and in BaF3 cells engineered to stably express Mpl (BaF3/Mpl). The binding of thrombopoietin to Mpl activates multiple kinase pathways, including the Jak/STAT, Ras/Raf/MAPK, and phosphatidylinositol 3-kinase pathways, but it is not clear how these kinases promote cell cycling. Here, we show that thrombopoietin induces phosphatidylinositol 3-kinase and that phosphatidylinositol 3-kinase is required for thrombopoietin-induced cell cycling in BaF3/Mpl cells and in primary megakaryocyte progenitors. Treatment of BaF3/Mpl cells and megakaryocytes with the phosphatidylinositol 3-kinase inhibitor LY294002 inhibited mitotic and endomitotic cell cycl-ing. BaF3/Mpl cells treated with thrombopoietin and LY294002 were blocked in G(1), whereas megakaryocyte progenitors treated with thrombopoietin and LY294002 showed both a G(1) and a G(2) cell cycle block. Expression of constitutively active Akt in BaF3/Mpl cells restored the ability of thrombopoietin to promote cell cycling in the presence of LY294002. Constitutively active Akt was not sufficient to drive proliferation of BaF3/Mpl cells in the absence of thrombopoietin. We conclude that in BaF3/Mpl cells and megakaryocyte progenitors, thrombopoietin-induced phosphatidylinositol 3-kinase activity is necessary but not sufficient for thrombopoietin-induced cell cycle progression. Phosphatidylinositol 3-kinase activity is likely to be involved in regulating the G(1)/S transition.  相似文献   

5.
The cytokine thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells. TPO exerts its effect through activation of the c-Mpl receptor and of multiple downstream signal transduction pathways. While the membrane-proximal half of the cytoplasmic domain appears to be required for the activation of signaling molecules that drive proliferation, the distal half and activation of the mitogen-activated protein kinase pathway have been implicated in mediating megakaryocyte maturation in vitro. To investigate the contribution of these two regions of c-Mpl and the signaling pathways they direct in mediating the function of TPO in vivo, we used a knock-in (KI) approach to delete the carboxy-terminal 60 amino acids of the c-Mpl receptor intracellular domain. Mice lacking the C-terminal 60 amino acids of c-Mpl (Delta60 mice) have normal platelet and megakaryocyte counts compared to wild-type mice. Furthermore, platelets in the KI mice are functionally normal, indicating that activation of signaling pathways connected to the C-terminal half of the receptor is not required for megakaryocyte differentiation or platelet production. However, Delta60 mice have an impaired response to exogenous TPO stimulation and display slower recovery from myelosuppressive treatment, suggesting that combinatorial signaling by both ends of the receptor intracellular domain is necessary for an appropriate acute response to TPO.  相似文献   

6.
Regulation of megakaryocyte and platelet production remains poorly understood. In culture system two separate activities are needed for maximum production of megakaryocyte progenitors: promotor of clonal expansion and promoter of maturation, other growth factors and cells also contribute to regulation of megakaryocytopoiesis. Increased proliferation of megakaryocytes is observed in myeloproliferative disorders and idiopathic thrombocytopenic purpura, and decreased proliferation is found in aplastic anaemia and hypomegakaryocytic thrombocytopenia. Dysmegakaryocytopoiesis is present in myelodysplastic syndromes and acute leukaemia, and a proliferation of immature megakaryocytes in acute megakaryoblastic leukaemia. Increased understanding of human megakaryocytopoiesis is beginning to help in rational clinical management.  相似文献   

7.
8.
The purpose of this paper is to describe a model of megakaryocytopoiesis as a branching process with stochastic processes regulating critical control points of differentiation along the stem cell megakaryocyte platelet axis. Progress of cells through these critical control points are regulated by transitional probabilities, which in turn are regulated by influences such as growth factors. The critical control points include transition of resting megakaryocytic stem cells (CFU-meg) into proliferating stem cells, the cessation of cytokinesis, and the cessation of DNA synthesis. A computerized computational method has been developed for directly fitting the stochastic branching model to colony growth data. The computational model has allowed transitional probabilities to be derived from colony size data. The model provides a unifying explanation for much of the heterogeneity of stages of maturation within populations of megakaryocytes and is fully compatible with historical data supporting the stochastic nature of hematopoietic stem cell regulation and with modern molecular concepts about control of the cell cycle.  相似文献   

9.
Abstract

An important step in megakaryocyte maturation is the appropriate assembly of at least two distinct subsets of α-granules. The mechanism that sorts the α-granule components into distinct structures and mediates their release in response to specific stimuli is now emerging. P-selectin and von Willebrand factor are two proteins present in the α-granules that recognize P-selectin glycoprotein ligand on neutrophils and collagen in the subendothelial matrix. These proteins may play an important role in determining the differential release of the α-granule contents in response to external stimuli. If P-selectin and von Willebrand factor are localized in the same or different α-granules is not known. To clarify this question, we analyzed by immunoelectron microscopy the localization of von Willebrand factor and P-selectin during the maturation of wild-type and Gata1low megakaryocytes induced in vivo by treating animals with thrombopoietin. Gata1low is a hypomorphic mutation that blocks megakaryocyte maturation, reduces the levels of von Willebrand factor expression and displaces P-selectin on the demarcation membrane system. The maturation block induced by this mutation is partially rescued by treatment in vivo with thrombopoietin. In immature megakaryocytes, both wild-type and Gata1low, the two receptors were co-localized in the same cytoplasmic structures. By contrast, the two proteins were segregated to separate α-granule subsets as the megakaryocytes matured. These observations support the hypothesis that P-selectin and von Willebrand factor may ensure differential release of the α-granule content in response to external stimuli.  相似文献   

10.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

11.
An assay describing conditions for the maturation of single immature megakaryocytes in vitro is reported. Enriched populations of small, relatively immature megakaryocytes have been found to develop into single, mature megakaryocytes by 60 hours in semisolid agar cultures. Continued incubation of these cells did not lead to the formation of colonies within 5–7 days. Maturation was indicated by increasing cell size and cytoplasmic and acetylcholinesterase content. Factors stimulating the development of immature megakaryocytes were found in preparations of human embryonic kidney cell-conditioned media (a source of in vivo Thrombopoietic Stimulatory Factor), peritoneal exudate cell-conditioned medium, lung-conditioned medium, or bone marrow cellular sources of activity (adherent cells or cells that sediment at 5–6 mm hr-1). Immature megakaryocytes cultured serum free responded to sources of an auxiliary megakaryocyte potentiating activity by developing into single, large megakaryocytes but did not respond to a megakaryocyte colony-stimulating factor devoid of detectable potentiator activity present in WEHl-3-conditioned medium. In contrast, serum-free proliferation of the megakaryocyte progenitor cell required both megakaryocyte colony-stimulating factor and the auxiliary potentiator activity. In the presence of megakaryocyte colony-stimulating factor alone, progenitor cells did not form colonies of easily detectable megakaryocytes. However, groups of cells comprised entirely of small acetylcholinesterase containing immature megakaryocytes were observed, thus establishing that megakaryocyte colony development passes through a stage of immature cells prior to detectable megakaryocyte development and that some acetylcholinesterase-containing cells can undergo cellular division.  相似文献   

12.
Recent advances in regenerative medicine have created a broad spectrum of stem cell research. Among them, tissue stem cell regulations are important issues to clarify the molecular mechanism of differentiation. Adipose tissues have been shown to contain abundant preadipocytes, which are multipotent to differentiate into cells including adipocytes, chondrocytes, and osteoblasts. In this study, we have first shown that megakaryocytes and platelets can be generated from adipocyte precursor cells. Human adipocyte precursor cells were cultured in conditioned media for 12 days to differentiate adipocytes, followed by 12 days of culture in media containing thrombopoietin. The ultrastructures of adipocyte precursor cell- and bone marrow CD34-positive cell-derived megakaryocytes and platelets were similar. In addition, adipocyte precursor cell-derived platelets exhibited surface expression of P-selectin and bound fibrinogen upon stimulation with platelet agonists, suggesting that these platelets were functional. This is the first demonstration that human subcutaneous adipocyte precursor cells can generate megakaryocyte and functional platelets in an in vitro culture system.  相似文献   

13.
14.

Background

Ph-negative myeloproliferative neoplasms (MPNs) are clonal disorders that include primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET). Although the pathogenesis of MPNs is still incompletely understood, an involvement of the megakaryocyte lineage is a distinctive feature.

Methodology/Principal Findings

We analyzed the in vitro megakaryocyte differentiation and proplatelet formation in 30 PMF, 8 ET, 8 PV patients, and 17 healthy controls (CTRL). Megakaryocytes were differentiated from peripheral blood CD34+ or CD45+ cells in the presence of thrombopoietin. Megakaryocyte output was higher in MPN patients than in CTRL with no correlation with the JAK2 V617F mutation. PMF-derived megakaryocytes displayed nuclei with a bulbous appearance, were smaller than ET- or PV-derived megakaryocytes and formed proplatelets that presented several structural alterations. In contrast, ET- and PV-derived megakaryocytes produced more proplatelets with a striking increase in bifurcations and tips compared to both control and PMF. Proplatelets formation was correlated with platelet counts in patient peripheral blood. Patients with pre-fibrotic PMF had a pattern of megakaryocyte proliferation and proplatelet formation that was similar to that of fibrotic PMF and different from that of ET.

Conclusions/Significance

In conclusion, MPNs are associated with high megakaryocyte proliferative potential. Profound differences in megakaryocyte morphology and proplatelet formation distinguish PMF, both fibrotic and prefibrotic, from ET and PV.  相似文献   

15.
Binding of tumor necrosis factor-alpha (TNF-alpha) to its receptor activates IKK complex, which leads to inducement of NF-kappaB activity. Here we report that activation of Mpl ligand is also linked to IKK and NF-kappaB activity. Mpl ligand, also known as thrombopoietin (TPO) or megakaryocyte growth and development factor (MGDF), induces megakaryocyte differentiation and inhibition of mitotic proliferation, followed by induction of polyploidization and fragmentation into platelets. The latter process is often observed in megakaryocytes undergoing apoptosis. Treatment of a Mpl ligand-responding megakaryocytic cell line with this cytokine led to an immediate, transient increase in IKK activity followed by a profound decrease in this kinase activity over time. This decrease was not due to an effect on the levels of the IKK regulatory components IKKalpha and IKKbeta. Proliferating megakaryocytes displayed a constitutive DNA-binding activity of NF-kappaB p50 homodimers and of NF-kappaB p50-p65 heterodimers. As expected, reduced IKK activity in Mpl ligand-treated cells was associated with a significant reduction in NF-kappaB DNA binding activity and in the activity of a NF-kappaB-dependent promoter. Our study is thus the first to identify a constitutive NF-kappaB activity in proliferating megakaryocytes as well as to describe a link between Mpl receptor signaling and IKK and NF-kappaB activities. Since a variety of proliferation-promoting genes and anti-apoptotic mechanisms are activated by NF-kappaB, retaining its low levels would be one potential mechanism by which inhibition of mitotic proliferation is maintained and apoptosis is promoted during late megakaryopoiesis.  相似文献   

16.
Megakaryocytes are platelet precursor cells that undergo endomitosis. During this process, repeated rounds of DNA synthesis are characterized by lack of late anaphase and cytokinesis. Physiologically, the majority of the polyploid megakaryocytes in the bone marrow are cell cycle arrested. As previously reported, cyclin E is essential for megakaryocyte polyploidy; however, it has remained unclear whether up-regulated cyclin E is an inducer of polyploidy in vivo. We found that cyclin E is up-regulated upon stimulation of primary megakaryocytes by thrombopoietin. Transgenic mice in which elevated cyclin E expression is targeted to megakaryocytes display an increased ploidy profile. Examination of S phase markers, specifically proliferating cell nuclear antigen, cyclin A, and 5-bromo-2-deoxyuridine reveals that cyclin E promotes progression to S phase and cell cycling. Interestingly, analysis of Cdc6 and Mcm2 indicates that cyclin E mediates its effect by promoting the expression of components of the pre-replication complex. Furthermore, we show that up-regulated cyclin E results in the up-regulation of cyclin B1 levels, suggesting an additional mechanism of cyclin E-mediated ploidy increase. These findings define a key role for cyclin E in promoting megakaryocyte entry into S phase and hence, increase in the number of cell cycling cells and in augmenting polyploidization.  相似文献   

17.
18.
樊云祯  高彤  叶寅  田波   《生物工程学报》1997,13(4):350-354
利用RT-PCR方法从中国人胎肝总RNA中扩增出人血小板生成素(hTPO)的cDNA。序列分析结果表明,我们所获得的hTPO cDNA与献报道中的基因序列高度同源,其中第497bp、595bp、767bp和795bp位碱基分别由T、G、T和T代替了献中的G、A、G和C,从而导致了166、169和256位氨基酸由报道中的Ser、Lys和Gly变为Phe、Glu和Val。  相似文献   

19.
Recombinant human interleukin 11 (rhIL-11) has previously been shown to ameliorate thrombocytopenia in several animal models. To elucidate the mechanisms involved in rhIL-11-induced hematopoiesis, a kinetic analysis of megakaryopoiesis was performed in mitomycin C (MMC)-induced myelosuppressive mice. Mice intravenously injected with MMC (2 mg/kg) for two consecutive days from day -1 developed severe thrombocytopenia with a nadir of platelet counts at 24x10(4)/microl on day 12 and neutropenia. Treatment with rhIL-11 (500 microg/kg/day) from day 1 to 21 significantly ameliorated the degree and duration of thrombocytopenia and enhanced the platelet recovery, and also enhanced the recovery from neutropenia. In MMC-treated mice, the decreases in bone marrow megakaryocyte progenitors and megakaryocyte counts preceded the decrease in platelet counts by MMC treatment. RhIL-11 induced an increase in the number of megakaryocyte progenitors from day 4 to 14, followed by an increase in the megakaryocytes by day 20. There was a ploidy shift in megakaryocytes towards lower ploidy cells by day 9 in myelosuppressed mice. RhIL-11 caused a shift towards a higher ploidy with 32 and 64N on day 4, and 32N on day 14. These results suggest that rhIL-11 ameliorates the thrombocytopenia via the stimulation of both the maturation and commitment followed by the proliferation of megakaryocytic cells.  相似文献   

20.
The tyrosine kinase Tie-2 and its ligands Angiopoietins (Angs) transduce critical signals for angiogenesis in endothelial cells. This receptor and Ang-1 are coexpressed in hematopoietic stem cells and in a subset of megakaryocytes, though a possible role of angiopoietins in megakaryocytic differentiation/proliferation remains to be demonstrated. To investigate a possible effect of Ang-1/Ang-2 on megakaryocytic proliferation/differentiation we have used both normal CD34(+) cells induced to megakaryocytic differentiation and the UT7 cells engineered to express the thrombopoietin receptor (TPOR, also known as c-mpl, UT7/mpl). Our results indicate that Ang-1/Ang-2 may have a role in megakaryopoiesis. Particularly, Ang-2 is predominantly produced and released by immature normal megakaryocytic cells and by undifferentiated UT7/mpl cells and slightly stimulated TPO-induced cell proliferation. Ang-1 production is markedly induced during megakaryocytic differentiation/maturation and potentiated TPO-driven megakaryocytic differentiation. Blocking endogenously released angiopoietins partially inhibited megakaryocytic differentiation, particularly for that concerns the process of polyploidization. According to these data it is suggested that an autocrine angiopoietin/Tie-2 loop controls megakaryocytic proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号