首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

2.
Study of the lactose and galactose transport systems in Kluyveromyces lactis has shown that lactose uptake is by active transport. The transport system is under monogenic control and is inducible. Galactose uptake is also by active transport but the system is controlled by two genes which, in the four strains we studied, are present only in K. lactis CBS 2359. Galactose uptake in the other K. lactis strains is by a simple diffusion process.  相似文献   

3.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

4.
Starved cells of Streptococcus lactis ML3 (grown previously on galactose, lactose, or maltose) accumulated methyl-beta-D-thiogalactopyranoside (TMG) by the lactose:phosphotransferase system. More than 98% of accumulated sugar was present as a phosphorylated derivative, TMG-6-phosphate (TMG-6P). When a phosphotransferase system sugar (glucose, mannose, 2-deoxyglucose, or lactose) was added to the medium simultaneously with TMG, the beta-galactoside was excluded from the cells. Galactose enhanced the accumulation of TMG-6P. Glucose, mannose, lactose, or maltose plus arginine, was added to a suspension of TMG-6P-loaded cells of S. lactis ML3, elicited rapid expulsion of intracellular solute. The material recovered in the medium was exclusively free TMG. Expulsion of galactoside required both entry and metabolism of an appropriate sugar, and intracellular dephosphorylation of TMG-6P preceded efflux of TMG. The rate of dephosphorylation of TMG-6P by permeabilized cells was increased two-to threefold by adenosine 5'-triphosphate but was strongly inhibited by fluoride. S. lactis ML3 (DGr) was derived from S. lactis ML3 by positive selection for resistance to 2-deoxy-D-glucose and was defective in the enzyme IIMan component of the glucose:phosphotransferase system. Neither glucose nor mannose excluded TMG from cells of S. lactic ML3 (DGr), and these two sugars failed to elicit TMG expulsion from preloaded cells of the mutant strain. Accumulation of TMG-6P by S. lactis ML3 can be regulation by two independent mechanisms whose activities promote exclusion or expulsion of galactoside from the cell.  相似文献   

5.
The gene encoding the lactose transport protein (lacS) of Leuconostoc lactis NZ6009 has been cloned from its native lactose plasmid, pNZ63, by functional complementation of lactose permease-deficient Escherichia coli mutants. Nucleotide sequence analysis revealed an open reading frame with the capacity to encode a protein of 639 amino acids which had limited but significant identity to the lactose transport carriers (LacS) of Streptococcus thermophilus (34.5%) and Lactobacillus bulgaricus (35.6%). This similarity was present both in the amino-terminal hydrophobic carrier domain, which is homologous to the E. coli melibiose transporter, and in the carboxy-terminal enzyme IIA-like regulatory domain. The flanking regions of DNA surrounding lacS were also sequenced. Preceding the lacS gene was a small open reading frame in the same orientation encoding a deduced 95-amino-acid protein with a sequence similar to the amino-terminal portion of beta-galactosidase I from Bacillus stearothermophilus. The lacS gene was separated from the downstream beta-galactosidase genes (lacLM) by 2 kb of DNA containing an IS3-like insertion sequence, which is a novel arrangement for lac genes in comparison with that in other lactic acid bacteria. The lacS gene was cloned in an E. coli-Streptococcus shuttle vector and was expressed both in a lacS deletion derivative of S. thermophilus and in a pNZ63-cured strain, L. lactis NZ6091. The role of the LacS protein was confirmed by uptake assays in which substantial uptake of radiolabeled lactose or galactose was observed with L. lactis or S. thermophilus plasmids harboring an intact lacS gene. Furthermore, galactose uptake was observed in NZ6091, suggesting the presence of at least one more transport system for galactose in L. lactis.  相似文献   

6.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

7.
8.
9.
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose.  相似文献   

10.
Active transport of non-metabolizable compounds by Escherichia coli resulted in thermogenesis. With substrates of the lactose permease (thiomethyl galactoside, lactose) and of the glucose transport system (α-methylglucoside) the rate of heat production was largest on initial addition, but then decreased. The kinetics of heat production varied with the transport system. For the lactose transport system, more than turnover of the permease was required since heat was not produced in azide treated cells, where facilitated diffusion is known to take place. The lactose permease thermal effects are suggested to reflect operation of the energy coupling system. The thermal effects are considered to represent a useful approach in studying transport energetics and mechanisms.  相似文献   

11.
A cosmid gene library of the genome of Lactococcus lactis subsp. lactis 712 has been constructed in the broad host range plasmid pLAFR1 in Escherichia coli LE392. Three lactococcal genes from the bank were identified by heterologous complementation of specific mutations in strains of E. coli. A cosmid clone encoding a putative lactose transport gene was identified by complementing an E. coli lacY mutant. The complemented clone supported the uptake of 14C lactose in transport assays. The DNA fragment responsible was subcloned and localised to a 1.28 kb fragment of the lactococcal chromosome.  相似文献   

12.
Streptococcus lactis 7962, which ferments lactose slowly, has a lactose phosphoenolpyruvate-dependent phosphotransferase system and low phospho-beta-galactosidase activity, in addition to high beta-galactosidase activity. Lactose 6'-phosphate accumulated to a high concentration (greater than 100 mM) in cells growing on lactose. In contrast, lactic streptococci, which ferment lactose rapidly and use only the lactose-phosphotransferase system for uptake, contained high phospho-beta-galactosidase activity and low concentrations (0.9 to 1.6 mM) of lactose 6'-phosphate. It is concluded that rate-limiting phospho-beta-galactosidase activity is primarily responsible for defective lactose metabolism in S. lactis 7962.  相似文献   

13.
Twelve lactose-assimilating strains of the yeast species Kluyveromyces marxianus and its varieties marxianus, lactis and bulgaricus were studied with respect to transport mechanisms for lactose, glucose and galactose, fermentation of these sugars and the occurrence of extracellular lactose hydrolysis. The strains fell into three groups. Group I (two strains): Fermentation of lactose, glucose and galactose, extracellular lactose hydrolysis, apparent facilitated diffusion of glucose and galactose; Group II (two strains): Lactose not fermented, glucose and galactose fermented and transported by an apparent proton symport, extracellular hydrolysis of lactose present (one strain) or questionable; Group III (eight strains): Lactose, glucose and galactose fermented, lactose transported by an apparent proton symport mechanism, extracellular hydrolysis of lactose and transport modes for glucose and galactose variable.  相似文献   

14.
Galactose transport systems in Streptococcus lactis   总被引:12,自引:8,他引:4       下载免费PDF全文
Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

15.
16.
The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.  相似文献   

17.
18.
The effect of sodium fluoride on lactose metabolism and o-nitrophenyl-beta-d-galactopyranoside (ONPG) hydrolysis by Streptococcus lactis strains 7962 and C(2)F suggested that different mechanisms of lactose utilization existed in the two strains. Sodium fluoride prevented lactose utilization and ONPG hydrolysis by whole cells of S. lactis C(2)F but had no effect on S. lactis 7962. Although hydrolysis of ONPG by toluene-treated cells of S. lactis 7962 occurred without addition of phospho-enolpyruvate (PEP), toluene-treated cells of S. lactis C(2)F required the presence of this cofactor. Concentrated cell extracts of S. lactis C(2)F hydrolyzed ONPG; this hydrolysis was inhibited by NaF, but the addition of PEP, in the presence of NaF, restored maximal activity. Addition of acetyl-phosphate, carbamyl-phosphate, adenosine-5'-triphosphate, guanosine-5'-triphosphate, or uridine-5'-triphosphate did not stimulate activity. The presence of cofactors did not stimulate and NaF did not inhibit the hydrolysis in extracts of S. lactis 7962. To confirm the operation of two mechanisms, S. lactis 7962 was shown to hydrolyze lactose to glucose and galactose, whereas S. lactis C(2)F was unable to split the disaccharide. In addition, whole cells of S. lactis C(2)F rapidly accumulated a phosphorylated derivative of thiomethyl-beta-d-galactoside (TMG) which behaved chromatographically and electrophoretically like TMG-PO(4). Unexpectedly, S. lactis 7962 also accumulated a TMG derivative, although the rate was extremely low. These data indicate that different mechanisms of lactose utilization exist in the two strains, with a phosphorylation step dependent on PEP involved in S. lactis C(2)F.  相似文献   

19.
The apparent instability of beta-galactosidase in toluene-treated cells or cell-free extracts of lactic streptococci is explained by the fact that these organisms do not contain the expected enzyme. Instead, various strains of Streptococcus lactis, S. cremoris, and S. diacetilactis were shown to hydrolyze o-nitrophenyl-beta-d-galactoside-6-phosphate (ONPG-6-P), indicating the presence of a different enzyme. In addition, lactose metabolism in S. lactis C(2)F was found to involve enzyme I (EI), enzyme II (EII), factor III (FIII), and a heat-stable protein (HPr) of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system analogous to that of Staphylococcus aureus. Mutants of S. lactis C(2)F, defective in lactose metabolism, possessed the phenotype lac(-) gal(-). These strains were unable to accumulate (14)C-thiomethyl-beta-d-galactoside, to hydrolyze ONPG, or to utilize lactose when grown in lactose or galactose broth. In addition, these mutants contained EI and HPr, but lacked EII, FIII, and the ability to hydrolyze ONPG-6-P. This suggested that the defect was in the phosphorylation step. Lactose-negative mutants of S. lactis 7962, a strain containing beta-galactosidase, could be separated into several classes, which indicated that this organism is not dependent upon the PEP-phosphotransferase system for lactose metabolism.  相似文献   

20.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号