首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of Na+ -dependent Ca2+ transport was investigated in microsomal fractions from the longitudinal smooth muscle of the guinea-pig ileum and from the rat aorta, and its activity was compared with that of the plasmalemmal ATP-dependent Ca2+ pump previously identified in these preparations. The rate of Ca2+ release from plasmalemmal vesicles previously loaded with Ca2+ through the ATP-dependent Ca2+ pump was transiently faster in the presence of 150 mM-NaCl in the medium than in the presence of 150 mM-KCl or -LiCl or 300 mM-sucrose. Na+-loaded vesicles took up Ca2+ when an outwardly directed Na+ gradient was formed across the membrane. The Ca ionophore A23187 induced a rapid release of 85% of the sequestered Ca2+, whereas only 15% was displaced by La3+. Ca2+ accumulated by the Na+-induced Ca2+ transport was released by the addition of NaCl, but not KCl, to the medium. Ca2+ uptake in Na+-loaded vesicles was inhibited in the presence of increasing NaCl concentration in the medium. Half-maximum inhibition was observed with 28 mM-NaCl. Data fitted the Hill equation, with a Hill coefficient (h) of 1.9. Na+-induced Ca2+ uptake was a saturable function of Ca2+ concentration in the medium. Half-maximum activity was obtained with 18 microM-Ca2+ in intestinal-smooth-muscle microsomal fraction and with 50 microM-Ca2+ in aortic microsomal fraction. The results suggest that in these membrane preparations a transmembrane movement of Ca2+ can be driven by a Na+ gradient. However, the Na+-induced Ca2+ transport had a lower capacity, a lower affinity and a slower rate than the ATP-dependent Ca2+ pump.  相似文献   

2.
Artificially generated K+ gradient from the sarcoplasmic reticulum vesicles enhances the ATP-dependent Ca2+ transport. The effect is not specific for K+, and is observed when K+ is replaced by Na+ or choline. Dissipation of the K+, Na+, choline gradient does not influence the ATP-dependent Ca2+ transport in proteoliposomes from asolectin and purified Ca2+-ATPase. The K gradient in the presence of valinomycin stimulates the ATP-dependent Ca2+ transport in proteoliposomes.  相似文献   

3.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

4.
Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C.  相似文献   

5.
The tss1 tomato (Lycopersicon esculentum) mutant exhibited reduced growth in low K+ and hypersensitivity to Na+ and Li+. Increased Ca2+ in the culture medium suppressed the Na+ hypersensitivity and the growth defect on low K+ medium of tss1 seedlings. Interestingly, removing NH4+ from the growth medium suppressed all growth defects of tss1, suggesting a defective NH4(+)-insensitive component of K+ transport. We performed electrophysiological studies to understand the contribution of the NH4(+)-sensitive and -insensitive components of K+ transport in wild-type and tss1 roots. Although at 1 mm Ca2+ we found no differences in affinity for K+ uptake between wild type and tss1 in the absence of NH4+, the maximum depolarization value was about one-half in tss1, suggesting that a set of K+ transporters is inactive in the mutant. However, these transporters became active by raising the external Ca2+ concentration. In the presence of NH4+, a reduced affinity for K+ was observed in both types of seedlings, but tss1 at 1 mm Ca2+ exhibited a 2-fold higher Km than wild type did. This defect was again corrected by raising the external concentration of Ca2+. Therefore, membrane potential measurements in root cells indicated that tss1 is affected in both NH4(+)-sensitive and -insensitive components of K+ transport at low Ca2+ concentrations and that this defective transport is rescued by increasing the concentration of Ca2+. Our results suggest that the TSS1 gene product is part of a crucial pathway mediating the beneficial effects of Ca2+ involved in K+ nutrition and salt tolerance.  相似文献   

6.
Vesicular preparations of sarcolemma isolated from rat myocardium possessed high ATPase (4.32 +/0 0.57 micromole/min per mg), adenylate cyclase (121 +/- 11 pmole/min per mg) and creatine kinase (1.74 +/- 0.35 micromole/min per mg) activities and a Na-Ca exchange activity specific for sodium. The ATPase activity was inhibited by digitoxigenin by 50-70% and was not changed by ouabain, EGTA, ionophore A23187 and oligomycin, thus showing the absence of mitochondrial and sarcoplasmic reticulum contaminations in the sarcolemmal preparations. The preparations consisted mostly of closed inside-out vesicles. The preparation was used to study the mechanism of Ca2+ penetration across the sarcolemmal membrane. For this purpose the vesicles were load with 45Ca2+, which relatively slowly diffused from the medium into the vesicles, and which was bound to the binding sites inside the vesicles (n = 20.5 +/- 4.6 nmoles per mg of protein, Kd approximately equal to 1.8 +/- 0.21 mM). The transmembrane movement of Ca2+ was demonstrated by the following findings: 1) the ionophore A23187 only insignificantly increased the total vesicular Ca2+ content, but strongly accelerated Ca2+ efflux from the vesicles along its concentration gradient; 2) gramicidin and osmotic shock caused a similar acceleration of Ca2+ efflux. Ca2+ efflux from these vesicles along Ca2+ concentration gradient was studied under conditions, when the extravesicular Ca2+ content was lowered due to its binding to EGTA and by dilution. The gradient of Ca2+ concentration was from 2.0 mM inside to approximately 0.1 micro M outside. The rate of 45Ca2+ efflux depended hyperbolically on the intravesicular Ca2+ efflux from the vesicles was inhibited by Mn2+, Co2+ and verapamil when they acted from the inside of the vesicles. An increase in ionophore A23187 concentration increased the efflux of Ca2+ hyperbolically and enhanced only the maximal rate of the efflux. It is concluded that the passive permeability of Ca2+ across the sarcolemmal membrane along its concentration gradient is controlled by Ca2+ binding to the membrane.  相似文献   

7.
This investigation was principally undertaken to test the ionic gradient hypothesis as applied to active p-aminohippurate uptake in the rabbit kidney cortical slice preparation. Efflux of p-aminohippurate from the slice was shown to be independent of external Na+ concentration. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing p-aminohippurate increased intracellular concentrations of both Na+ and K+, and p-aminohippurate accumulation occurred. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing ouabain and p-aminohippurate resulted in a net increase in intracellular Na+ concentration but no p-aminohippurate accumulation occurred. Different combinations of preincubation and incubation media gave a high to low array of intracellular Na+ concentrations and these directly reflected their respective p-aminohippurate uptake. These results suggest that the Na+ gradient hypothesis does not adequately explain the transport of organic acids in rabbit kidney. These results also suggest that Na+ possibly has an intracellular role through its stimulation of (Na+ + K+)-ATPase channeled to energizing the p-aminohippurate accumulative mechanism.  相似文献   

8.
In experiments carried out with the use of the radioactive label (45Ca2+) on suspension of the rat uterus myocytes processed by digitonin solution (0.1 mg/ml), influence of spermine and cyclosporin A on Mg2+, ATP-dependent Ca2+ transport in mitochondria at different Mg2+ concentration were investigated. Ca2+ accumulation in mitochondria was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). It has been shown, that spermine (1 mM) stimulates Mg2+, ATP-dependent Ca2+ accumulation in mitochondria irrespective of Mg2+ concentration (3 or 7 mM) in the incubation medium. At the same time cyclosporin A (5 microM) effects on Ca2+ accumulation in mitochondria depend on Mg2+ concentration in the incubation medium: at 3 mM Mg2+ the stimulating effect was observed, and at 7 mM Mg2+ - the inhibitory one. In conditions which led to the increase of nonspecific mitochondrial permeability and, accordingly, to dissipation of electrochemical potential (it was reached by 5 min. preincubation of myocytes suspension in the medium that contained 10 microM Ca2+, 2 mM phosphate and 3 or 7 mM Mg2+, but not ATP) significant inhibition of Mg2+, ATP-dependent Ca2+ accumulation in mitochondria was observed. The inhibition to the greater degree was observed when medium ATP and Mg2+ were absent simultaneously in the preincubation. Thus the quality of spermine effects on Ca2+ accumulation was kept: stimulation in the presence both of 3 mM and 7 mM Mg2+. Ca2+ accumulation did not reach the control level when 3 mM Mg2+ and 1 mM spermine was present and ATP absent in the preincubation medium. However, in the presence of 7 mM Mg2+ and 1 mM spermine practically full restoration (up to a control level) of Ca2+ accumulation was observed. At the same time with other things being equal such restoration was not observed at simultaneous absence of ATP and Mg2+ in the preincubation medium. The quality of cyclosporin A effects on Ca2+ accumulation in mitochondria was also kept: stimulation - in the presence of 3 mM Mg2+, inhibition - in the presence of 7 mM Mg2+ in the preincubation medium. And, at last, in the presence of cyclosporin A irrespective of the fact which preincubation medium was used, Ca2+ accumulation level practically did not depend on Mg2+ concentration.  相似文献   

9.
心肌细胞核Ca^2+库特点及其调节的离体研究   总被引:1,自引:0,他引:1  
To investigate the regulation of Ca2+ in the isolated cardiac nuclei from rats which may illuminated the mechanism of nuclear calcium transport system. Elocity and isopyknic gradient centrifugation were employed to fractionate rat cardiac nuclei. Then fluo-4 confocal microscopy techniques was used to verify the changes of nuclear Ca2+. There are calcium-dependent Ca2+ uptake in the cardiac nuclear obtained from normal rats. The accumulation Ca2+ of cardiac nuclei in vitro from the incubating medium were not consistent with free [Ca2+] in incubating medium. The nuclear envelope was initially loaded with Ca2+ (1 mmol/L ATP and approximately 100 nmol/L Ca2+), Adequate Ca2+ loading was next confirmed by imaging the nuclear envelope and nucleoplasm. Exposure of Ca2+ -loaded nuclei to IP3, ryanodine or ryanodine + thapsigargin, respectively, resulted in a rapid and transient elevation of nucleoplasmic Ca2+ free concentration, this effects were abolished by pretreatment of cardiac nuclei with Ca2+ -ATPase inhibitor thapsigargin. Thapsigargin and IP3 receptor antagonist heparin induced nucleoplasmic Ca2+ free concentration decrease. Fluorescence experiments indicated that both ryanodine receptors and Ca2+ -ATPase were distributed in the outer layer of nuclear envelope, and inositol 1,4,5-trisphosphate receptors mainly dispersively localized at inner layer of nuclear envelope. The present study demonstrates that nuclear calcium were regulated by free Ca2+, IP3 and ryanodine. The results suggested calcium transport system might be present in the myocardial nuclei, the myocardial nuclei might served as one of calcium pools in myocardial cell.  相似文献   

10.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

11.
The effects of alkali metal cations on the rates at which Ca2+ and phosphatidic acid were cotransported from aqueous to hydrocarbon medium were examined. The alkali metal cations remained in the aqueous phase yet specifically influenced the transport of Ca2+ into the hydrocarbon solvent. For the physiological cations, Na+ and K+, there were critical concentration ranges in which small changes in concentration effected sharp changes in transport rates. The maximal rate observed with Na+ was an order of magnitude greater than that with K+; however, unlike Na+, K+ promoted low levels of transport below the critical concentration range. Li+ effected only low levels of transport even at high concentrations, whereas Rb+ and Cs+ induced transport at rates proportional to their concentrations. These results are discussed in terms of a classical ionophore model for the complex composed of a neutral phosphatidic acid dimer bridged by Ca2+.  相似文献   

12.
Experiments were designed to characterize the hormone sensitive transport of Ca2+ from the external media into rat hepatocytes maintained in culture. In the absence of added vasopressin, hepatocytes were nearly impermeable to Ca2+, whereas a significant and rapid influx of Ca2+ could be detected when external Ca2+ was added to hepatocytes after the addition of 20 nM vasopressin. The transport was measured as the initial rate of increase of free intracellular Ca2+ [( Ca2+]i) after Ca2+ addition to the external media. Most data were obtained from the majority of cells on a coverslip immersed in a spectrophotometric cuvette, but selected data were obtained by measuring Ca2+ changes in single cells. Ca2+ influx measured using a large number of cells was similar to data obtained using single cells. The Vmax of Ca2+ influx was 140 nM/s. Ca2+ transport was competitive with H+ so that the Km was 17.4 mM at pH 6.8, 3.7 mM at pH 7.4 and 1.8 mM at pH 7.8. Ca2+ influx was insensitive to external K+ (1 to 70 mM) and to the presence of 5 nM valinomycin, suggesting that it was independent of the electrical potential gradient across the plasma membrane. Transport also appeared to be insensitive to the activity of protein kinase C, which was varied by addition of the activator, 12-myristate 13-acetate phorbol ester, and by addition of the kinase inhibitor, staurosporine. Stimulation of transport following vasopressin addition exhibited a delay with a t1/2 of approximately 30 s. A vasopressin antagonist blocked the activation of transport, if added prior to vasopressin. However, experiments designed to determine the effect of hormone occupancy per se on transport activity indicated that continued hormone occupancy was not required. When the external medium was nominally Ca2+ free and an antagonist was added 1 min after vasopressin, Ca2+ entry, even 8 min after antagonist addition, was rapid. Conversely, preincubation with vasopressin antagonist in medium containing 0.5 mM Ca2+ dramatically lowered plasma membrane Ca2+ permeability. The ER Ca2+ pool emptied by vasopressin was refilled in the presence of vasopressin antagonist plus 0.5 mM Ca2+, but did not refill when the medium contained no added Ca2+. Under the conditions of these experiments, the Ca2+ levels of the ER hormone-sensitive Ca2+ pool were estimated as well as intracellular concentrations of inositol-1,4,5-trisphosphate. The Ca2+ levels of the endoplasmic reticulum correlated inversely with plasma membrane Ca2+ permeability, whereas cellular concentrations of inositol-1,4,5-trisphosphate did not correlate with Ca2+ permeability.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

14.
We have measured the contents of Na+ and K+ in isolated chromaffin granules. Total contents varied between 227 and 283 nmol/mg of protein, equivalent to matrix concentrations of 53-66 mM. The value found depended on the isolation buffer used, and the ratio of the two ions reflected the composition of the buffer. We then measured the free concentration of each of these ions, and of Ca2+, in the matrix, by using a null-point method with acridine-fluorescence quenching. This monitored H+ fluxes induced by an ionophore in the presence of known concentrations of the ion in the supporting medium. In contrast with organic constituents of the matrix, which have low activity coefficients, Na+ and K+ were found to have activity coefficients around 0.8 Ca2+, however, was strongly bound: its free concentration was only 0.03% of the total.  相似文献   

15.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle accumulate Ca2+ at the expense of ATP hydrolysis. The heat released during the hydrolysis of each ATP molecule varies depending on whether or not a Ca2+ gradient is formed across the vesicle membrane. After Ca2+ accumulation, a part of the Ca2+-ATPase activity is not coupled with Ca2+ transport (Yu, X., and Inesi, G. (1995) J. Biol. Chem. 270, 4361-4367). I now show that both the heat produced during substrate hydrolysis and the uncoupled ATPase activity vary depending on the ADP/ATP ratio in the medium. With a low ratio, the Ca2+ transport is exothermic, and the formation of the gradient increases the amount of heat produced during the hydrolysis of each ATP molecule cleaved. With a high ADP/ATP ratio, the Ca2+ transport is endothermic, and formation of a gradient increased the amount of heat absorbed from the medium. Heat is absorbed from the medium when the Ca2+ efflux is coupled with the synthesis of ATP (5.7 kcal/mol of ATP). When there is no ATP synthesis, the Ca2+ efflux is exothermic (14-16 kcal/Ca2+ mol). It is concluded that in the presence of a low ADP concentration the uncoupled ATPase activity is the dominant route of heat production. With a high ADP/ATP ratio, the uncoupled ATPase activity is abolished, and the Ca2+ transport is endothermic. The possible correlation of these findings with thermogenesis and anoxia is discussed.  相似文献   

16.
Reversal of the cycle of sarcoplasmic reticulum ATPase starts from ATPase phosphorylation by Pi, in the presence of Mg2+, and leads to ATP synthesis. We show here that ATP can also be synthesized when Ca2+ replaces Mg2+. In the absence of a calcium gradient and in the presence of dimethyl sulfoxide, ATPase phosphorylation from Pi and Ca2+ led to the formation of an unstable phosphoenzyme. This instability was due to a competition between the phosphorylation reaction induced by Pi and Ca2+ and the transition induced by Ca2+ binding to the transport sites, which led to a conformation that could not be phosphorylated from Pi. Dimethyl sulfoxide and low temperature stabilized the calcium phosphoenzyme, which under appropriate conditions, subsequently reacted with ADP to synthesize ATP. Substitution of Co2+, Mn2+, Cd2+, or Ni2+ for Mg2+ induced ATPase phosphorylation from Pi, giving phosphoenzymes of various stabilities. However, substitution of Ba2+, Sr2+, or Cr3+ produced no detectable phosphoenzymes, under the same experimental conditions. Our results show that ATPase phosphorylation from Pi, like its phosphorylation from ATP, does not have a strict specificity for magnesium.  相似文献   

17.
Calcium-tolerant cardiac myocytes were isolated from adult rat ventricles and sarcolemmal glucose transport was assessed by measuring linear initial uptake rates of the nonmetabolized glucose analog 3-O-methyl-D-glucose in the presence and absence of Ca2+ in the incubation medium. (1) Agents which are known to increase internal Na+ and thus stimulate Ca2+ influx via Na+-Ca2+ exchange stimulated 3-methylglucose transport in the presence of external Ca2+. These include low-Na+ medium, 10(-6) M ouabain and K+-free medium, cyanide and the sodium ionophore, monensin. Hyperosmolarity stimulated transport also in the absence of Ca2+, consistent with release of Ca2+ from internal stores. Transport was decreased in a hypo-osmolar medium and with 10(-9) M ouabain, a concentration which stimulates the Na+ pump. (2) The calcium ionophore A23187 increased basal 3-methylglucose transport but opposed stimulation of transport by insulin. (3) Insulin-stimulated transport was antagonized by palmitate and this effect was reversed by 2-bromostearate, an inhibitor of fatty acid oxidation. These results are identical in all respects to those obtained in intact cardiac and skeletal muscle preparations, confirming that hexose transport in muscle shows Ca2+ dependence and indicating that isolated cardiac myocytes are suitable for the study of this phenomenon.  相似文献   

18.
We report the activities of taxol (an anticancer drug) and colchicine, which are inhibitors of microtubule organization, on the complexation and transport of Na+, K+, Mg2+ and Ca2+ ions across a liquid membrane, using a spectrophotometric procedure. Taxol, a diterpenoid compound, that has been demonstrated to possess a potent antitumour activity, is shown to extract Na+, K+, Mg2+ and Ca2+ ions from the aqueous solution to the organic phase with preference for Ca2+ ions. A kinetic study of the transport and complexation of Na+, K+, Mg2+ and Ca2+ ions through a liquid membrane revealed that the K+ ion is more rapidly transported and the Ca2+ ion is more rapidly complexed than other ions. However, colchicine, another alkaloid compound, extracted and transported only the divalent ions tested, Mg2+ and Ca2+. In both complexation and transport, the flux of the ions increases with the concentration of taxol or colchicine. Complexation and ionophoric properties of taxol and colchicine sheds new lights on therapeutic properties of these drugs. The treatment of disease states by the administration of these drugs to alter membrane permeability will prove to be a valuable therapeutic concept.  相似文献   

19.
Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.  相似文献   

20.
The development of sarcoplasmic reticulum membranes was studied in vivo and in tissue culture in chicken pectoralis muscle cells. The concentration of the calcium- and magnesium-activated ATPase measured by selective labeling of the enzyme with [32P]ATP in whole muscle homogenates was found to increase in developing chicken pectoralis muscle in vivo from 0.01 nmol/mg of protein in 12-day embryos to 0.3 to 0.4 nmol/mg of protein in 1-month-old chicks, where it constitutes about 3% of the total protein content of muscle. In cultured muscle cells the concentration of calcium-sensitive phosphoprotein increased from 0.015 nmol/mg of protein at 2 days to 0.04 to 0.05 nmol/mg of protein after 5 days of culture. This amount represents about 0.5% of the protein content of the muscle cells. The accumulation of Ca2+ transport ATPase began during fusion and continued with a linear rate during 8 days of culture. The density of 75 A intramembranous particles seen by freeze-etch electron microscopy on fracture faces of sarcoplasmic reticulum membranes is about 4,000/mum2 in adult chick pectoralis muscle but only 400/mum2 in cultured muscle cells in rough proportion to the concentration of Ca2+-sensitive phosphoprotein. The Ca2+, Na+, and K+ concentration of the medium and addition of ouabain, caffeine, or the calcium ionophores A23187 and X537A sharply influence the concentration of calcium transport ATPase in cultured muscle cells, parallel with their effect upon cell fusion and growth. These observations are consistent with the proposition that the gene expression leading to the accumulation of Ca2+ transport ATPase during development in culture may be regulated by intracellular ion concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号