共查询到20条相似文献,搜索用时 0 毫秒
2.
Inhibition of photosynthesis in isolated spinach chloroplasts by P i is decreased by the presence of PP i and increased with increasing Mg 2+ concentration. Previously reported regulation of this photosynthesis by protein factors from spinach leaves appears to be due mostly to pyrophosphate phosphohydrolase (EC 3.6.1.1) activity which converts PP i to P i and to the effects of PP i and Mg 2+ on this pyrophosphatase activity. 相似文献
3.
It was shown that raising pod seedlings by the hydroponics method on KH2PO4 solutions at concentrations between 10(-7) and 10(-5) M leads to an increase in the rate of oxygen release (delta O2/delta t), with the chlorophyll content in leaves being unchanged. The values of the parameters FM/FT of slow fluorescence induction and B/A of photoinduced changes in ESR1 signals from pod leaves correlate with the delta O2/delta t value. 相似文献
4.
Anions of several weak acids inhibited photosynthesis in isolated spinach chloroplasts. Inhibition was drastic at low pH and weak or absent at high pH. Glyoxylate was particularly effective and inhibition decreased in the order: glyoxylate, nitrite, glycerate, formate, hydroxypyruvate, glycolate, propionate, acetate, pyruvate. These anions operated as indirect proton shuttles across the chloroplast envelope. They compensated active proton fluxes into the medium, minimized gradients in proton activity across the chloroplast envelope, and so prevented light-dependent stroma alkalization. This caused inhibition of sugar bisphosphatases which are known to be pH-regulated. At concentrations that caused potosynthesis inhibition, the proton shuttles were not effective in decreasing the proton gradient across the thylakoids. Some anions also inhibited fructose-bisphosphatase directly, when present at concentratins higher than needed for photosynthesis inhibition. 相似文献
5.
Thylakoids prepared from spinach ( Spinacea oleracea L.) chloroplasts were exposed to osmotic stress in vitro in the presence or absence of different inorganic salts. By an hour after incubation in 1.0 M sorbitol and 10 mM (or more) MgCl 2, the thylakoids lost approximately 80% of their photosystem (PS) II activity, but not PS I. The inhibition occurred only in presence of magnesium as indicated by the combinations of several cations/anions. The PS II activity was relatively insensitive to osmotic stress in the presence of diphenyl carbazide. We therefore conclude that under conditions of water stress in the presence of 10 mM or higher Mg 2+, the oxygen evolving system in chloroplasts is rapidly inactivated.Abbreviations DCMU
3(3,4-dichlorophenyl)-1,1-dimethylurea
- DCPIP
2,6-dichlorophenol indophenol
- DPC
diphenyl carbazide
- MV
methyl viologen
- PS
photosystem
Part of this work was included in the thesis submitted by the first author of M.Phil.degree. 相似文献
6.
Phosphate recycling under photorespiratory conditions was investigated using intact wheat chloroplasts from Triticum aestivum (cv. Maris dove). A decline in the optimal Pi level needed to support steady-state photosynthesis was observed (a) as the bicarbonate supply became limiting, or (b) as oxygen concentrations were increased. Further, at subsaturating CO2 and elevated O2 (52%), photosynthetic induction periods were shortest in the absence of exogenous Pi, and severely extended by its addition. Thus, photosynthesis under low CO2 levels which favor ribulose 1,5 bisphosphate (RuBP) oxygenase activity and glycolate synthesis by chloroplasts decreases their dependency on exogenous Pi from the initial illumination of chloroplasts through to the attainment of steady state rates of O2 evolution. Uptake of phosphate (Pi) was directly measured at ambient O2 concentrations and showed the stoichiometry of O2 evolved to Pi consumed at 10 mmol/L bicarbonate (saturating) had a mean value of 3.0, and was increased to 5.4 at 2.5 mmol/L bicarbonate and to > 8.0 at 1.0 mmol/L bicarbonate. The observation is consistent with enhanced stromal recycling of Pi released during hydrolysis of phosphoglycolate produced in greater quantities as the ratio of RuBP carboxylase relative to oxygenase activities (vc/vo) declines. The theoretical relationship between vc/vo and O2/Pi stoichiometries was derived and compared favorably to experimental data obtained. 相似文献
8.
Light-induced alkalinization of the extracellular medium was found to be a common feature of the primary photosynthetic process of several marine microalgae. The light-induce PH increase of suspensions of whole cells was immediately and severely inhibited by a single dose of water-soluble components from crude and fuel oils. Differential effects on the rates of microalgal photosynthetic O2 evolution and cell suspension pH increase suggest different toxicity mechanisms of the water-soluble components of no. 2 fuel oil as compared with Southern Louisiana and Jay Crude oils. These short-term studies on the nature of sublethal petroleum toxicity to microalgae indicate that the primary effect may be through direct action on the energy-yielding electron transport systems. 相似文献
9.
Light-induced alkalinization of the extracellular medium was found to be a common feature of the primary photosynthetic process of several marine microalgae. The light-induce PH increase of suspensions of whole cells was immediately and severely inhibited by a single dose of water-soluble components from crude and fuel oils. Differential effects on the rates of microalgal photosynthetic O2 evolution and cell suspension pH increase suggest different toxicity mechanisms of the water-soluble components of no. 2 fuel oil as compared with Southern Louisiana and Jay Crude oils. These short-term studies on the nature of sublethal petroleum toxicity to microalgae indicate that the primary effect may be through direct action on the energy-yielding electron transport systems. 相似文献
10.
1. After an initial lag, isolated spinach chloroplasts evolved O 2 in illuminated reaction mixtures containing bicarbonate but no added phosphate. This evolution soon ceased but could be restarted by the addition of phosphate. 2. The phosphate requirement could be met by orthophosphate, inorganic pyrophosphate, ATP or ADP but not by AMP. Approx. 3 molecules of O2 were evolved for each molecule of orthophosphate added and approx. 6 for each molecule of pyrophosphate. 3. With CO2 as the sole added substrate the extent of the initial lag in O2 evolution was not greatly affected by small quantities of added orthophosphate but as the concentration of orthophosphate was increased there was a progressive increase in the lag and a progressive decrease in the maximum rate. Pyrophosphate failed to produce these effects at a 100 times the concentration and in the presence of pyrophosphate the orthophosphate inhibition was less severe. There was little or no orthophosphate inhibition in the presence of substrate quantities of 3-phosphoglycerate or ribose 5-phosphate and CO2. 4. There was also a requirement for phosphate by chloroplasts evolving O2 in the presence of 3-phosphoglycerate or ribose 5-phosphate plus CO2. In the presence of endogenous phosphate only, added ribose 5-phosphate suppressed the O2 evolution which normally followed the addition of 3-phosphoglycerate. 5. The results provide direct support for the proposed phosphate requirement of the photosynthetic carbon cycle and are discussed in this context. They also imply that orthophosphate, ribose 5-phosphate and 3-phosphoglycerate can penetrate the intact chloroplast envelope with considerable rapidity. 相似文献
11.
The interaction of inorganic pyrophosphatase from E. coli with inorganic phosphate (Pi) was studied in a wide concentration range of phosphate. The apoenzyme gives two inactive compounds with Pi, a product of phosphorylation of the carboxylic group of the active site and a stable complex, which can be detected in the presence of the substrate. The phosphorylation occurs when Pi is added on a millimole concentration scale, and micromole concentrations are sufficient for the formation of the complex. The formation of the phosphorylated enzyme was confirmed by its sensitivity to hydroxylamine and a change in the properties of the inactive enzyme upon its incubation in alkaline medium. The phosphorylation of pyrophosphatase and the formation of the inactive complex occur upon interaction of inorganic phosphate with different subsites of the enzyme active sites, which are connected by cooperative interactions. 相似文献
12.
Populus euramericana cv. I-214 and Helianthus annuus L. cv. Russian Mammoth were exposed to various concentrations of O 3 SO 2 or NO 2 for 2 h in a cylindrical assimilation chamber. The threshold concentrations of air pollutants for inhibition of net photosynthesis
differed between the two species and also between the pollutants tested. Furthermore, the lethal concentrations where the
net photosynthetic rates were completely inhibited, also differed between species and between pollutants. For SO 2 and NO 2, P. euramericana was more tolerant photosynthetically than H. annuus when related to the concentration of pollutants used during the experiment. However, when related to the cumulative uptake
rate of each pollutant, the photosynthetic tolerance of the two species was similar. In contrast to the effects of SO 2 or NO 2, the influence of O 3 on net photosynthesis was quite different. The relative rates of net photosynthesis in both species showed the same linear
relationship with O 3 concentration. However, the relationship between the relative rate of net photosynthesis and the cumulative uptake rate of
O 3 differed between the two species, although it was linear in both cases. 相似文献
13.
Inorganic carbon concentrating mechanisms (CCMs) catalyse the accumulation of CO(2) around rubisco in all cyanobacteria, most algae and aquatic plants and in C(4) and crassulacean acid metabolism (CAM) vascular plants. CCMs are polyphyletic (more than one evolutionary origin) and involve active transport of HCO(3)(-), CO(2) and/or H(+), or an energized biochemical mechanism as in C(4) and CAM plants. While the CCM in almost all C(4) plants and many CAM plants is constitutive, many CCMs show acclimatory responses to variations in the supply of not only CO(2) but also photosynthetically active radiation, nitrogen, phosphorus and iron. The evolution of CCMs is generally considered in the context of decreased CO(2) availability, with only a secondary role for increasing O(2). However, the earliest CCMs may have evolved in oxygenic cyanobacteria before the atmosphere became oxygenated in stromatolites with diffusion barriers around the cells related to UV screening. This would decrease CO(2) availability to cells and increase the O(2) concentration within them, inhibiting rubisco and generating reactive oxygen species, including O(3). 相似文献
14.
Linolenic acid (C 18:3) inhibited photosynthesis by intact spinachchloroplasts. This inhibition was due neither to a lack of NADPHin chloroplasts nor to a direct inhibition of the enzyme activitiesin the Calvin-Benson cycle. Linolenate inhibited CO 2 fixationand oxygen evolution more effectively than NADP + photoreductionbut did not inhibit the activity of several key enzymes of theCalvin cycle. Linolenate inhibited phosphate influx and 3-phosphoglyceraldehydeefflux across the chloroplast envelope. A hypothesis explainingthe inhibition of photosynthesis by linolenate is presented. 1 This work is part of a doctoral program which is carried outby L. Mv? Akamba in this laboratory. (Received October 14, 1978; ) 相似文献
16.
Respiration drives the accumulation of a small amount of calcium in corn ( Zea mays L.) mitochondria, and this calcium is released when respiration ceases. A postenergized addition of phosphate leads to phosphate uptake and enhaced calcium retention. Oligomycin, KCN, 2,4-dinitrophenol, or mersalyl are without effect on the phosphate-induced calcium retention. Addition of phosphate also inhibits the release of endogenous phosphate which normally accompanies the calcium. It is suggested that passive phosphate uptake retards the release of endogenous phosphate which is complexed with the calcium. 相似文献
17.
Photosynthetic oxygen evolution by a reconstituted chloroplast system utilising sn-phospho-3-glycerol (3-phosphoglycerate) ceases upon the addition of ribose 5-phosphate even though the presence of this metabolite permits a rapid and immediate CO2 fixation. The period of cessation is appreciable at 0.1 mM ribose 5-phosphate. It is lengthened as the amount of added ribose 5-phosphate is increased and by the addition of dithiothreitol, a known activator of ribulose-5-phosphate kinase. Ribulose 1,5-bisphosphate is without effect. A similar interruption of O2 evolution may also be brought about by the addition of ADP or by ADP-generating systems such as glucose plus hexokinase. Spectrophotometric experiments indicate that the reoxidation of NADPH in the presence of sn-phospho-3-glycerol is similarly affected. The transient inhibition by ribose 5-phosphate is not observed in the presence of an active ATP-generating system or in the presence of sufficient DL-glyceraldehyde to inhibit ribulose-5-phosphate kinase activity. It is concluded that ribose 5-phosphate inhibits photosynthetic O2 evolution by adversely affecting the steady-state ATP/ADP ratio and consequently the reduction of sn-phospho-3-glycerol to glyceraldehyde 3-phosphate. The results are discussed in their relation to ADP regulation of photosynthetic carbon assimilation and metabolite transport. 相似文献
19.
The rate of dark relaxation of the oxygen evolving system in chloroplasts is shown to depend on the value of the surface charge of some chloroplast membrane component having protein nature and isoelectric point at pH 6.0. The substitution of H2O for D2O leads to isoelectric point shift of this protein. 相似文献
|