首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the structure of a capsular polysaccharide from Sinorhizobium fredii HWG35. This polysaccharide was isolated following the standard protocols applied for lipopolysaccharide isolation. On the basis of monosaccharide analysis, methylation analysis, mass spectrometric analysis, one-dimensional (1)H and (13)C NMR, and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the following disaccharide repeating unit: -->6)-2,4-di-O-methyl-alpha-d-Galp-(1-->4)-beta-d-GlcpA-(1-->. Strain HWG35 produces a capsular polysaccharide that does not show the structural motif (sugar-Kdx) observed in those S. fredii strains that, while effective with Asiatic soybean cultivars, are unable to form nitrogen-fixing nodules with American soybean cultivars. Instead, the structure of the capsular polysaccharide of S. fredii HWG35 is in line with those produced by strains HH303 (rhamnose and galacturonic acid) and B33 (4-O-methylglucose-3-O-methylglucuronic acid), two S. fredii strains that form nitrogen-fixing nodules with both groups of soybean cultivars. Hence, in these three strains that effectively nodulate American soybean cultivars, the repeating unit of the capsular polysaccharide is composed of two hexoses, one neutral (methylgalactose, rhamnose, or methylglucose) and the other acidic (glucuronic, galacturonic, or methylglucuronic acid).  相似文献   

2.
The importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land. For the past 10 years, our group has obtained several isolates showing high diversity in morphological, physiological, genetic, and symbiotic properties in relation to the putative parental inoculant strains. In this study, parental strains and putative natural variants isolated from field-grown soybean nodules were genetically characterized in relation to conserved genes (by repetitive extragenic palindromic PCR using REP and BOX A1R primers, PCR-restriction fragment length polymorphism, and sequencing of the 16SrRNA genes), nodulation, and N(2)-fixation genes (PCR-RFLP and sequencing of nodY-nodA, nodC, and nifH genes). Both genetic variability due to adaptation to the stressful environmental conditions of the Brazilian Cerrados and HGT events were confirmed. One strain (S 127) was identified as an indigenous B. elkanii strain that acquired a nodC gene from the inoculant B. japonicum. Another one (CPAC 402) was identified as an indigenous Sinorhizobium (Ensifer) fredii strain that received the whole symbiotic island from the B. japonicum inoculant strain and maintained an extra copy of the original nifH gene. The results highlight the strategies that bacteria may commonly use to obtain ecological advantages, such as the acquisition of genes to establish effective symbioses with an exotic host legume.  相似文献   

3.
费氏中华根瘤菌(Sinorhizobium fredii)YC4能在大豆(Glycine max)和野大豆(G.soja)上形成正常固氮的根瘤.人工培养条件下用^14C标记的薄层层析(TLC)法检测根瘤菌产生的结瘤因子(LCOs)的结果表明,与其它4株费氏中华根瘤菌相比,YC4产生的LCOs含有较多的疏水性基团.从YC4菌株中分离到1株共生质粒发生了扩增的自发突变株YSC3,其产生的LCOs中含有较野生型菌株多的1个疏水性组分,28℃培养条件下产生的LCOs量亦较YC4显著增加.结瘤试验结果表明,YSC3菌株只能在大豆和野大豆上形成无效的根瘤.  相似文献   

4.
选用分离自新疆昌吉市郊土壤的大豆根瘤菌61株和参比菌5株,对它们进行唯一碳氮源、抗生素抗性和抗逆性等表型性状分析,结果表明所有菌株在70.1%相似水平上分为快生大豆根瘤菌和慢生大豆根瘤菌2群,其中快生大豆根瘤菌在81.4%相似水平上又分为2个亚群,40株供试的新疆快生大豆根瘤菌与新疆中华根瘤菌聚为一群;7株供试菌聚为一小群,抗逆性强。所有供试快生菌株都与费氏中华根瘤菌相似性低,所以新疆快生大豆根瘤菌可能是与费氏中华根瘤菌相独立的一个种。  相似文献   

5.
6.
As the putative center of origin for soybean and the second largest region of soybean production in China, the North China Plain covers temperate and subtropical regions with diverse soil characteristics. However, the soybean rhizobia in this plain have not been sufficiently studied. To investigate the biodiversity and biogeography of soybean rhizobia in this plain, a total of 309 isolates of symbiotic bacteria from the soybean nodules collected from 16 sampling sites were studied by molecular characterization. These isolates were classified into 10 genospecies belonging to the genera Sinorhizobium and Bradyrhizobium, including four novel groups, with S. fredii (68.28%) as the dominant group. The phylogeny of symbiotic genes nodC and nifH defined four lineages among the isolates associated with Sinorhizobium fredii, Bradyrhizobium elkanii, B. japonicum, and B. yuanmingense, demonstrating the different origins of symbiotic genes and their coevolution with the chromosome. The possible lateral transfer of symbiotic genes was detected in several cases. The association between soil factors (available N, P, and K and pH) and the distribution of genospecies suggest clear biogeographic patterns: Sinorhizobium spp. were superdominant in sampling sites with alkaline-saline soils, while Bradyrhizobium spp. were more abundant in neutral soils. This study clarified the biodiversity and biogeography of soybean rhizobia in the North China Plain.  相似文献   

7.
采用PCR-RFLP技术在不同水平上鉴定大豆根瘤菌   总被引:2,自引:0,他引:2  
采用16S rRNA基因PCR扩增与限制性酶切片段多态性分析(RFLP)技术对选自弗氏中华根瘤菌(S.fredii)、大豆慢生根瘤菌(B.japonicum)和埃氏慢生根瘤菌(B.elkanii)的19株代表菌进行了比较分析,根据用3种限制性内切酶的RFLP分析结果,可将供试菌株分为S.fredii,B.japonicum, B.elkanii Ⅱ和B.elkanii Ⅱa等4种基因型。各类菌株之间没有交叉,因此本研究采用的PCR-RFLP技术不失为一种快速鉴别大豆根瘤菌的新方法。采用本技术已将分离自中国的22株快生菌和19株慢生菌分别鉴定为S.frediiB.japonicum。对供试参比菌株和野生型菌株进行的16S~23S基因间隔DNA(IGS)的PCR-RFLP分析结果表明:S.frediiB.japonicum菌株的IGS长度不同,所有供试S.fredii菌株的IGS为2.1 kb,而供试B.japonicum菌株则为2.0 kb。依据RFLP的差异,可将来自中国两个不同地区的S.fredii株区分为2个基因型,而来自中国东北黑龙江地区的19株B.japonicum菌株则可分为11个基因型。对上述野生型菌株还进行了REP-PCR和ERIC-PCR分析并确定其具有菌株水平的特异性。  相似文献   

8.
The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S. fredii HH103 K-antigen polysaccharide (KPS) repeating unit. Three rkp-3 genes (rkpM, rkpP, and rkpQ) involved in the biosynthesis of the HH103 KPS repeating unit (a derivative of the pseudaminic acid) have been mutated and analyzed. All the rkp-3 mutants failed to produce KPS and their lipopolysaccharide (LPS) profiles were altered. These mutants showed reduced motility and auto-agglutinated when early-stationary cultures were further incubated under static conditions. Glycine max, Vigna unguiculata (determinate nodule-forming legumes), and Cajanus cajan (indeterminate nodules) plants inoculated with mutants in rkpM, rkpQ, or rkpP only formed pseudonodules that did not fix nitrogen and were devoid of bacteria. In contrast, another indeterminate nodule-forming legume, Glycyrrhiza uralensis, was still able to form some nitrogen-fixing nodules with the three S. fredii HH103 rifampicin-resistant rkp-3 mutants tested. Our results suggest that the severe symbiotic impairment of the S. fredii rkp-3 mutants with soybean, V. unguiculata, and C. cajan is mainly due to the LPS alterations rather than to the incapacity to produce KPS.  相似文献   

9.
We determined the sequences for a 260-base segment amplified by the polymerase chain reaction (corresponding to positions 44 to 337 in the Escherichia coli 16S rRNA sequence) from seven strains of fast-growing soybean-nodulating rhizobia (including the type strains of Rhizobium fredii chemovar fredii, Rhizobium fredii chemovar siensis, Sinorhizobium fredii, and Sinorhizobium xinjiangensis) and broad-host-range Rhizobium sp. strain NGR 234. These sequences were compared with the corresponding previously published sequences of Rhizobium leguminosarum, Rhizobium meliloti, Agrobacterium tumefaciens, Azorhizobium caulinodans, and Bradyrhizobium japonicum. All of the sequences of the fast-growing soybean rhizobia, including strain NGR 234, were identical to the sequence of R. meliloti and similar to the sequence of R. leguminosarum. These results are discussed in relation to previous findings; we concluded that the fast-growing soybean-nodulating rhizobia belong in the genus Rhizobium and should be called Rhizobium fredii.  相似文献   

10.
Inositol derivative compounds provide a nutrient source for soil bacteria that possess the ability to degrade such compounds. Rhizobium strains that are capable of utilizing certain inositol derivatives are better colonizers of their host plants. We have cloned and determined the nucleotide sequence of the myo-inositol dehydrogenase gene (idhA) of Sinorhizobium fredii USDA191, the first enzyme responsible for inositol catabolism. The deduced IdhA protein has a molecular mass of 34,648 Da and shows significant sequence similarity with protein sequences of Sinorhizobium meliloti IdhA and MocA; Bacillus subtilis IolG, YrbE, and YucG; and Streptomyces griseus StrI. S. fredii USDA191 idhA mutants revealed no detectable myo-inositol dehydrogenase activity and failed to grow on myo-inositol as a sole carbon source. Northern blot analysis and idhA-lacZ fusion expression studies indicate that idhA is inducible by myo-inositol. S. fredii USDA191 idhA mutant was drastically affected in its ability to reduce nitrogen and revealed deteriorating bacteroids inside the nodules. The number of bacteria recovered from such nodules was about threefold lower than the number of bacteria isolated from nodules initiated by S. fredii USDA191. In addition, the idhA mutant was also severely affected in its ability to compete with the wild-type strain in nodulating soybean. Under competitive conditions, nodules induced on soybean roots were predominantly occupied by the parent strain, even when the idhA mutant was applied at a 10-fold numerical advantage. Thus, we conclude that a functional idhA gene is required for efficient nitrogen fixation and for competitive nodulation of soybeans by S. fredii USDA191.  相似文献   

11.
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.  相似文献   

12.
A gene encoding chitinase from Serratia marcescens BJL200 was cloned into a broad-host-range vector (pRK415) and mobilized into Sinorhizobium fredii USDA191. Chitinolytic activity was detected in S. fredii USDA191 transconjugants that carried the S. marcescens chiB gene. Chitinase-producing S. fredii USDA191 formed nodules on soybean cultivar McCall. However, there was a delay in nodule formation and a marked decrease in the total number of nodules formed by the chitinase-producing S. fredii in comparison with the wild-type strain. Expression of chitinase in S. meliloti RCR2011 also impeded alfalfa nodulation. Thin-layer chromatography of 14C-labeled Nod factors from chitinase-producing S. fredii USDA191 revealed hydrolysis of lipochitooligosaccharides.  相似文献   

13.
用5种代表性大豆为捕集植物从湖北潜江灰潮土中经盆栽试验分离筛选出50株费氏中华根瘤菌,对它们的生长速度、耐盐性、pH生长范围、天然抗药性、碳氮源利用和共生效应等同时进行了比较研究,证实了同一土壤环境中费氏中华根瘤菌群体的多样性。  相似文献   

14.
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and (1)H-NMR analyses did not detect KPS in these mutants. RT-PCR experiments indicated that, most probably, the rkpAGHI genes are cotranscribed. Glycine max cultivars (cvs.) Williams and Peking inoculated with mutants SVQ536 and SVQ538 showed reduced nodulation and symptoms of nitrogen starvation. Many pseudonodules were also formed on the American cv. Williams but not on the Asiatic cv. Peking, suggesting that in the determinate nodule-forming S. fredii-soybean symbiosis, bacterial KPS might be involved in determining cultivar-strain specificity. S. fredii HH103 mutants unable to produce KPS or exopolysaccharide (EPS) also showed reduced symbiotic capacity with Glycyrrhiza uralensis, an indeterminate nodule-forming legume. A HH103 exoA-rkpH double mutant unable to produce KPS and EPS was still able to form some nitrogen-fixing nodules on G. uralensis. Thus, here we describe for the first time a Sinorhizobium mutant strain, which produces neither KPS nor EPS is able to induce the formation of functional nodules in an indeterminate nodule-forming legume.  相似文献   

15.
Cowpea (Vigna unguiculata) and mung bean (Vigna radiata) are important legume crops yet their rhizobia have not been well characterized. In the present study, 62 rhizobial strains isolated from the root nodules of these plants grown in the subtropical region of China were analyzed via a polyphasic approach. The results showed that 90% of the analyzed strains belonged to or were related to Bradyrhizobium japonicum, Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense and Bradyrhizobium elkanii, while the remaining represented Rhizobium leguminosarum, Rhizobium etli and Sinorhizobium fredii. Diverse nifH and nodC genes were found in these strains and their symbiotic genes were mainly coevolved with the housekeeping genes, indicating that the symbiotic genes were mainly maintained by vertical transfer in the studied rhizobial populations.  相似文献   

16.
本文对从中国东北地区土壤中分离到的8株弗氏中华根瘤菌(Sinorhizobiumfredit)进行了血清学和氢代谢研究。交叉凝集试验结果表明其中存在3种血清型,而Sj5与国内外目前发现的14种S.fredii接种的大豆依赖共生固氮作用,在其株木质部汁液中,含有大量的酰脲(尿囊酸+尿囊素),它是共生固氮氮素贮存和运输的主要形式,与接种B.japonicum的值株木质部汁液中的氮运输特征基本相同。而施以无机氮源的大豆植株,其木质部汁液中酰脲含量相对较低,但却含有相对多的氮基酸[1]。  相似文献   

17.
一株能在苜蓿上结瘤的费氏中华根瘤菌   总被引:7,自引:1,他引:6  
费氏中华根瘤菌 (Sinorhizobiumfredii) 0 4 2BS分离自新疆的苜蓿根瘤 ,通过交叉结瘤试验 ,发现它既可在苜蓿上又可在大豆上结瘤固氮。 1 6SrDNAPCR RFLP分析表明 ,0 4 2BS与费氏中华根瘤菌模式菌株USDA2 0 5的 4种限制性酶切图谱完全一致。其G +Cmol%为 60 0 ,与费氏中华根瘤菌USDA2 0 5和USDA1 91的DNA同源性分别为 84 9%和89 6% ,表明 0 4 2BS属于费氏中华根瘤菌。应用绿色荧光蛋白基因标记 0 4 2BS ,得到重组菌株 0 4 2BSG。将其接种保定苜蓿和北引 1号大豆 ,并重新分离出根瘤菌 ,利用激光共聚焦荧光显微镜检测到标记基因的表达 ,从而确证了 0 4 2BS能在苜蓿和大豆上结瘤。而且 ,0 4 2BS对不同苜蓿品种的结瘤能力不同  相似文献   

18.
It has been postulated that nodulation outer proteins (Nops) avoid effective nodulation of Sinorhizobium fredii USDA257 to nodulate with American soybeans. S. fredii HH103 naturally nodulates with both Asiatic (non-commercial) and American (commercial) soybeans. Inactivation of the S. fredii HH103 gene rhcJ, which belongs to the tts (type III secretion) cluster, abolished Nop secretion and decreased its symbiotic capacity with the two varieties of soybeans. S. fredii strains HH103 and USDA257, that only nodulates with Asian soybeans, showed different SDS-PAGE Nop profiles, indicating that these strains secrete different sets of Nops. In coinoculation experiments, the presence of strain USDA257 provoked a clear reduction of the nodulation ability of strain HH103 with the American soybean cultivar Williams. These results suggest that S. fredii Nops can act as either detrimental or beneficial symbiotic factors in a strain-cultivar-dependent manner. Differences in the flavonoid-mediated expression of rhcJ with respect to nodA were also detected. In addition, one of the Nops secreted by strain HH103 was identified as NopA.  相似文献   

19.
大豆可与中华根瘤菌属及慢生根瘤菌属的多种根瘤菌共生固氮.研究大豆品种与不同种根瘤菌之间的共生匹配性,对获得高效根瘤菌用于接种,提高大豆的产量及品质有重要的理论和实践意义.本研究使用黄淮海地区的优质高蛋白大豆品种鲁黄1号从当地土壤内捕捉并分离纯化到27株根瘤菌.经持家基因recA的序列分析,发现其中18株属于中华根瘤菌属,9株属于慢生根瘤菌属.选用两个属的代表菌株各一株(Sinorhizobium fredii S6和Bradyrhizobium sp. S10),分别在蛭石、土壤盆栽及大田试验条件下,研究这两株菌单独及混合接种对鲁黄1号大豆的生长、结瘤、固氮活力、产量、种子蛋白含量及含油量的影响.结果表明: 与S10菌株相比,S6菌株对大豆的促生能力更强,对提高产量和品质的效果更好,从而确定S6为与鲁黄1号大豆相匹配的高效根瘤菌,可作为黄淮海地区推广种植鲁黄1号大豆时接种高效根瘤菌的菌种资源.
  相似文献   

20.
A pair of primers homologous to the nolXWBTUV locus generated a 260 bp fragment by PCR only in the presence of Sinorhizobium fredii template DNA of different quality. This resulted in a fast and accurate method for the identification of S. fredii either from pure DNA, whole bacterial cells or nodule extracts. By means of two PCR fragments, one specific for S. fredii (260-bp) and the other specific for Bradyrhizobium japonicum (RSalpha), we found that S. fredii strain SMH12 and B. japonicum E109 were equally efficient at developing nodules on soybean plants grown under controlled environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号