首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for quantification of airborne birch and grass pollen allergens collected on porous polytetrafluoroethylene filters has been developed. In this method, the allergens firmly adsorbed to the sampling filter of 25 mm in diameter are reacted with specific antibodies conjugated to alkaline phosphatase, generating a matrix-bound allergen-antibody-phosphatase complex. The filter is then floated on a chemiluminescent enzyme substrate solution. The light intensity of the product is linearly related to the amount of allergen over a large mass range, 0-1000 SQ (1 SQ is about 250 pg of protein). This direct on sampling filter in solution (DOSIS) technique demonstrated intra-assay precisions between 6-16% and 11-15% for the levels of 1-100 SQ units of grass allergen Phl p 5 and 4-400 SQ units of birch allergen Bet v 1, respectively. The limits of quantification for the corresponding allergens were estimated to 0.5 and 2 SQ units. Application of DOSIS to analysis of the grass pollen allergen concentrations of outdoor air for 12 days in July 1998 revealed a correlation coefficient of 0.69 between pollen grain and allergen concentrations for the dry weather period. After rainy days large amounts of grass allergens were present even in the absence of pollen grains.  相似文献   

2.
A technique is presented that is capable of predicting the motion of airborne pollen grains and the probability of pollen capture by wind-pollinated plants. Equations for the motion of rigid-walled particles (= pollen grains, spores, or Sephadex beads) in a supporting, compressible fluid (= air) are derived from the first principles of fluid dynamics. These equations are incorporated into a computer program (MODEL) which can be used with a desktop computer. The operation of MODEL requires empirical data on the pattern of airflow or the motion of a pollen species around the surfaces of the taxonomically relevant ovulate plant organ. With this information, MODEL can predict the behavior of any pollen species for which physical properties (size and density) are specified or empirically known. The significance of this procedure lies in the quantification of physical phenomena that influence the mechanics and fluid dynamics of pollen capture in wind pollination. The technique is illustrated and tested by its application to two grass species (Setaria geniculata and Agrostis hiemalis) for which velocity fields of pollen motion have been previously reported.  相似文献   

3.
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000–2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257–265, 1952). The pollen season (start date, finish date) for grass and birch were determined using a first derivative method. Meteorological variables such as daily rainfall; maximum, minimum and average temperatures; cumulative sum of Sunshine duration; wind speed; and relative humidity were related to the grass and birch pollen counts for the pre-peak, post peak and the entire pollen season. The meteorological variables were correlated with the pollen count data for the following temporal supports: same-day, 1-day prior, 1-day mean prior, 3-day mean prior, 7-day mean prior. The direction of influence (positive/negative) of meteorological variables on pollen count varied for birch and grass, and also varied when the pollen season was treated as a whole season, or was segmented into the pre-peak and post-peak seasons. Maximum temperature, sunshine duration and rainfall were the most important variables influencing the count of grass pollen in the atmosphere. Both maximum temperature (pre-peak) and sunshine produced a strong positive correlation, and rain produced a strong negative correlation with grass pollen count in the air. Similarly, average temperature, wind speed and rainfall were the most important variables influencing the count of birch pollen in the air. Both wind speed and rain produced a negative correlation with birch pollen count in the air and average temperature produced a positive correlation.  相似文献   

4.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   

5.
Increased knowledge on allergenic molecules in the environmental air helps in the information on environmental air quality and in the prevention and treatment of allergies. The aim of this study is to develop and validate a new methodology for the simultaneous detection and quantification of several airborne allergens using protein microarray technology, which has been created for the clinical detection of allergens. The immunological method was performed with Immuno Solid-phase Allergen Chip (ISAC) inhibition assay. Reagents for the validation studies include the following: (1) three sera from patients allergic to grass pollen each with different IgE levels as the detection reagents, (2) recombinant Phl p 1 major allergen as the inhibitor for the inhibition assays, (3) “natural” Phl p 1 released by Phleum pratense (timothy grass) pollen grains as the “biologically” relevant aeroallergen and (4) samples of airborne pollens collected by a Multi-vial Cyclone Sampler for comparison of levels of pollen detection versus the protein allergen detection by the microarray assay. The results obtained showed that ISAC inhibition is a sensitive technique able to detect 2.1 pg/mL of Phl p 1 and the allergens released from 1 grain of natural pollen. Also, the airborne allergen samples analyzed showed a good correlation with the concentration of grass pollen in the air. The use of ISAC inhibition will greatly improve future airborne simultaneous allergen quantification, becoming a valuable option in air quality control.  相似文献   

6.
OBJECTIVES--To seek associations between meteorological factors, concentrations of air pollutants or pollen, and an asthma epidemic which occurred in London on 24 and 25 June 1994 after a thunderstorm. DESIGN--Retrospective study of patients'' accident and emergency department records, with bivariate and multivariate analysis of environmental factors and data collection for the two months surrounding the epidemic. SETTING--The accident and emergency department of St Mary''s Hospital in west central London. SUBJECTS--148 patients presenting with asthma between 1 June and 31 July 1994, of whom 40 presented in the 24 hours after the storm. RESULTS--The asthma epidemic was significantly associated with a drop in air temperature six hours previously and a high grass pollen concentration nine hours previously. Non-epidemic asthma was significantly associated with lightning strikes, increase in humidity or sulphur dioxide concentration, a drop in temperature or high rainfall the previous day, and a decrease in maximum air pressure or changes in grass pollen counts over the previous two days. CONCLUSIONS--New episodes of asthma during the epidemic on 24 and 25 June 1994 were associated with a fall in air temperature and a rise in grass pollen concentration. Non-epidemic asthma was significantly associated with a greater number of environmental changes. This may indicate that the patients with thunderstorm associated asthma were a separate population, sensitive to different environmental stimuli.  相似文献   

7.
The aim of the study was to determine the length of Poaceae pollen season, intradiurnal, daily and monthly pollen variation, and the effect of some meteorological parameters on atmospheric pollen concentration, at three monitoring sites in inland Croatia during the 2003-2004 period. Seven-day Hirst volumetric pollen and spore traps were used for pollen sampling. At all three monitoring sites considerably higher precipitation and lower average temperature in 2004 led to a marked decrease in the grass pollen concentration in the air at all three monitoring sites. The highest grass pollen concentrations were recorded in Ivani? Grad (typical rural area), considerably lower in Samobor (effect of forest vegetation), and lowest in Zagreb (urban area). The highest atmospheric Poaceae pollen concentrations in inland Croatia were generally recorded in May and June. The highest intradiurnal concentrations were recorded between 8.00 and 12.00 a.m. Results of this aeropalynologic study are expected to help in preventing the symptoms of allergic reaction in individuals with Poaceae pollen hypersensitivity.  相似文献   

8.
Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen‐allergic patients. Current pollen monitoring methods are microscope‐based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost‐effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next‐generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring.  相似文献   

9.
Summary On the basis of the results of seven years (1982–1988) of pollen and meteorological monitoring in the atmosphere of Perugia and Ascoli Piceno (central Italy) beginning of pollen season forecasts for Gramineae and Olea europaea L. are reported. The beginning of the pollen season for grass varied between May 2 nd and May 27th while for Olea it varied between May 26 th and June 23rd. By a statistical analysis of these data several significant correlations were found between the onset of the principal period of pollination and the air temperature in the preceding months and the number of ?heat units? required to flower. Utilizing multiple regressions a predictive method of the beginning of pollen season for both the taxa is reported.  相似文献   

10.
Airborne grass pollen in a grassland was measured using a Burkard air sampler and immunoblotting. The pollen antigens collected on the tape of the air sampler were transferred onto a nitrocellulose membrane, and visualized as purple spots by immunoenzymatic staining with anti-Lol p I antibody. These spots were quantified automatically using an image processing system. The airborne grass pollen antigens in the grassland where four species of grass were growing were prevalent mainly from evening to early morning during the first half of the pollen season, but in the daytime during the latter half of the season. The antigen dispersion time was confined to a few hours of the day. The flowering time of several grass species which were hydroponically cultured in the laboratory were also studied. Each species had a different flowering time. We believe that the time when an antigen is present during the day is related to the different flowering times of the various grass species growing in the grassland.  相似文献   

11.
Trajectory analysis is a valuable tool that has been used before in aerobiological studies, to investigate the movement of airborne pollen. This study has employed back-trajectories to examine the four highest grass pollen episodes at Worcester, during the 2001 grass pollen season. The results have shown that the highest grass pollen counts of the 2001 season were reached when air masses arrived from a westerly direction. Back-trajectory analysis has a limited value to forecasters because the method is retrospective and cannot be employed directly for forecasting. However, when used in conjunction with meteorological data this technique can be used to examine high magnitude events in order to identify conditions that lead to high pollen counts.  相似文献   

12.
Large spatial differences in the distribution of three allergologically relevant pollen types for Central Europe—birch, grass, and mugwort—are revealed within a large metropolitan area—Berlin, Germany. The purpose of the study is an examination of the hypothesis that these different pollen exposure conditions can cause different degrees of pollen-induced symptoms within the city. Pollen data from 14 gravimetric traps and one volumetric trap in Berlin and anonymously reported pollen-induced symptom data from the online-based self-documentation tool “Patient’s Hayfever Diary” (PHD) are used for the analysis of temporal and spatial variations of the severity of the overall total symptoms. Geographically localised symptom data are linked to the nearest pollen trap. Statistical analysis is performed using Kendall’s Tau-b. Higher amounts of monitored birch and grass pollen in the peripheral areas of Berlin induce stronger symptoms in PHD users located within suburbs than those located in the city centre. There is no statistical relationship between the varying presence of mugwort pollen in the air and the severity of symptoms. Spatial differences in the pollen-induced symptom severity within a large city coinciding with spatial differences in birch and grass pollen depositions are shown for the first time. Therefore, pollen data from a single trap may not provide an appropriate explanation for differences in pollen-induced symptoms across the city. More detailed and reliable information about the exposure to allergenic pollen can be addressed by installing further traps in order to improve the knowledge about pollen exposure within cities.  相似文献   

13.
An immunochromatographic method for qualitative and quantitative determination of aeroallergens direct on sampling (ADOS) filters has been developed. In this method, a porous polytetrafluoroethylene filter carrying adsorbed allergens is fixed by double-coated adhesive tape to a supporting filter paper matrix. Following addition of antibodies specific for the relevant allergens and washing and staining reagents via a reagent applicator an immunochromatogram is developed resulting in a 5-10 mm wide area of the sample filter covered with blue-violet-stained spots appearing on a faintly pink or white background. The method takes 30 to 90 min, depending on the nominal porosity (1.2-5 microm) and the defined reaction area (5-10 mm) of the sample filter. Application experiments with birch and grass pollen, soluble Bet v 1, Phl p 5 and mould allergens as well as cat allergen carried by airborne dust revealed a limit of detection of a few picograms of allergen as stained spots. The specificity of the new method to evaluate the type of allergen is a function of the selected antibodies. The concentrations of the allergen in an air sample are related to the number and intensity of stained spots.  相似文献   

14.
The Belgian Pollen Phone Service gives continuous information about the pollen content of the air. A comparison of the number of incoming phone calls with the pollen content of the air revealed a surprisingly good correlation. This article underlines the success of this service. It confirms the high susceptibility of hay fever sufferers at the beginning of the season. It also highlights that pollinosis is not always limited to birch and grass pollen allergy and it demonstrates the necessity for the continuous determination of the pollen content of the air. Allergies to mugwort pollen seem to be less important. The Pollen Phone Service is a prompt way to provide allergic subjects with recent pollen information.  相似文献   

15.
The Belgian Pollen Phone Service gives continuous information about the pollen content of the air. A comparison of the number of incoming phone calls with the pollen content of the air revealed a surprisingly good correlation. This article underlines the success of this service. It confirms the high susceptibility of hay fever sufferers at the beginning of the season. It also highlights that pollinosis is not always limited to birch and grass pollen allergy and it demonstrates the necessity for the continuous determination of the pollen content of the air. Allergies to mugwort pollen seem to be less important. The Pollen Phone Service is a prompt way to provide allergic subjects with recent pollen information.  相似文献   

16.
In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m−3) or high (50–100 pollen grains m−3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated (r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m−3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne’s air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne’s population that suffer from allergic problems.  相似文献   

17.
Ubiquitin is a ubiquitous protein involved in targeting proteins for degradation. Maize pollen was previously reported (Callis and Bedinger 1994) to show extremely low levels of ubiquitin monomer, and developmental significance was attributed to this surprising feature of maize pollen. However, we had previously shown (Muschietti et al. 1994) that tomato pollen had high levels of ubiquitin monomer. Here we show that pollen from most plant families has high levels of ubiquitin monomer. Most grasses tested show reduced levels of ubiquitin monomer, but some maize inbred lines have higher levels of ubiquitin monomer than other inbreds. There was no correlation between the level of ubiquitin monomer and either the monocotyledonous or tri-cellular condition of grass pollen or the dehydrated condition of mature pollen. Since many aspects of pollen development (i.e., wall formation, microspore mitosis, synthesis and storage of mRNAs and proteins, carbohydrates and lipids, dehydration at maturity) are stereotypical among all plant families, the reduced level of ubiquitin monomer in pollen of many grasses cannot be crucial for any feature of normal pollen development.  相似文献   

18.
One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature (R 2?=?0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures (R 2?=?0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.  相似文献   

19.
燕山南部花粉散布特征   总被引:1,自引:1,他引:0  
燕山南部花9粉用布特性研究表明,空气中的花粉反映的是植物花期的季节性变化,表 粉是植物多年花粉散布的混合,冲积物花粉与空气中和表土花粉显著不同,是取样点上游表土花粉的混合,与取样点周围植被关系较小。因此,根据冲积物花粉恢复古植被,反映的是整个流域的植被面貌,而不是某一点的植被特征。  相似文献   

20.
In spite of the low atmospheric pollen levels, Artemisia sensitisation and allergy has been reported widely. The aim of the study was to determine the length of pollen season, intradiurnal, daily and monthly pollen variation, and the effect of some meteorological parameters on atmospheric pollen concentrations in Central Croatia. Seven-day Hirst volumetric pollen and spore traps were used for pollen sampling. The Artemisia pollen season lasted from the end of July until the end of September with the highest concentrations in August. The percentage of the total pollen count ranged from 0.52% to 0.92%. The intradiurnal peak occurred between 10 a.m. and 12 a.m. Statistical analysis showed a significant correlations between higher air temperature and high pollen concentration as well as high precipitation and low pollen concentration. Results of this study are expected to help in preventing the symptoms of allergic reaction in individuals with Artemisia pollen hypersensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号