首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive HPLC/MS/MS method was developed and evaluated to determine the concentration of ritodrine (RTD) in human plasma. Liquid-liquid extraction with ethyl acetate was employed as the sample preparation method. The structural analogue salbutamol was selected as the internal standard (IS). The liquid chromatography was performed on a Hanbon Sci. & Tech. Lichrospher CN (150 mm x 4.6 mm, i.d., 5 microm) column (Hanbon, China) at 20 degrees C. A mixture of 0.03% acetic acid and methanol (50:50, v/v) was used as isocratic mobile phase to give the retention time 3.60 min for ritodrine and 2.94 min for salbutamol. Selected reaction monitoring (SRM) in positive ionization mode was employed for mass detection. The calibration functions were linear over the concentration range 0.39-100 ng mL(-1). The intra- and inter-day precision of the method were less than 15%. The lower limit of quantification was 0.39 ng mL(-1). The method had been found to be suitable for application to a pharmacokinetic study after oral administration of 20mg ritodrine hydrochloride tablet to 18 healthy female volunteers. The half-life is 2.54+/-0.67 h.  相似文献   

2.
We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS), for the quantification of the novel protease inhibitors (PIs) atazanavir and tipranavir. The sample pre-treatment consisted of protein precipitation with a mixture of methanol and acetronitrile using 100 microl plasma for atazanavir and 50 microl for tipranavir. Chromatographic separation was achieved on an Inertsil ODS3 column (50 mm x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml/min. The analytical run time was 5.5 min. The triple quadrupole mass spectrometer operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for drug quantification. The assay was linear over a concentration range of 0.05-10 microg/ml for atazanavir and 0.1-75 microg/ml for tipranavir. Saquinavir-d5 was used as internal standard. The intra- and inter-day coefficients of variation were less than 3.8% for atazanavir and less than 10.4% for tipranavir. Accuracies were within +/-7.3 and +/-7.2% for atazanavir and tipranavir, respectively. Both drugs were stable under various relevant storage conditions. The validated concentration ranges proved to be adequate to measure concentrations of human immunodeficiency virus type-1 (HIV-1)-infected individuals. The developed method could easily be combined with a previously developed LC-MS/MS assay for the quantification of protease inhibitors.  相似文献   

3.
A rapid, sensitive, robust and specific method was developed for the determination and quantitation of felodipine, in human blood plasma by liquid chromatography coupled with tandem mass spectrometry using nimodipine as internal standard. Felodipine was extracted from 0.5 mL human plasma by use of a liquid/liquid procedure using diethyl ether/hexane (80/20, v/v) as eluent. The method included a chromatographic run of 5 min using a C(18) analytical column (100 mm x 4.6 mm i.d.) and the calibration curve was linear over the range from 0.02 to 10 ng mL(-1) (r(2) > 0.994). The between-run precision, determined as relative standard deviation of replicate quality controls, was 5.7% (0.06 ng mL(-1)), 7.1% (0.6 ng mL(-1)) and 6.8% (7.5 ng mL(-1)). The between-run accuracy was +/- 0.0, 2.1 and 3.1% for the above-mentioned concentrations, respectively.  相似文献   

4.
A sensitive and precise LC-ESI-MS/MS method for the determination of vandetanib (ZD6474) in human plasma and cerebrospinal fluid (CSF) using [(13)C,d(3)]-ZD6474 as an internal standard (ISTD) was developed and validated. Sample preparation consisted of a simple liquid-liquid extraction with tert-butyl methyl ether containing 0.1% or 0.5% ammonium hydroxide. ZD6474 and ISTD were separated on a Kinetex C18 column (2.6 μm, 50 mm × 2.1 mm) at ambient temperature with an isocratic mobile phase (acetonitrile/10mM ammonium formate=50/50, v/v, at pH 5.0) delivered at 0.11 mL/min. The retention time of both compounds was at 1.60 min in a runtime of three min. Detection was achieved by an API-3200 LC-MS/MS system, monitoring m/z 475.1/112.1 and m/z 479.1/116.2 for vandetanib and ISTD, respectively. The method was linear in the range of 0.25-50 ng/mL (R(2) ≥ 0.990) for the CSF curve and from 1.0 to 3000 ng/mL (R(2) ≥ 0.992) for the plasma curve. The mean recovery for vandetanib was 80%. Within-day and between-day precisions were ≤ 8.8% and ≤ 5.9% for CSF and plasma, respectively. Within-day and between-day accuracies ranged from 95.0 to 98.5% for CSF, and from 104.0 to 108.5% for plasma. Analysis of plasma from six different sources showed no matrix effect for vandetanib (MF=0.98, %CV ≤ 4.97, n=6). This method was successfully applied to the analysis of pharmacokinetic samples from children with brain tumors treated with oral vandetanib.  相似文献   

5.
A novel analytical method was developed and validated for the rapid and simultaneous analysis of five toxic alkaloids: Brucine, Strychnine, Ephedrine, Aconitine and Colchicine, in blood and urine using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in the multiple reaction monitoring (HPLC-ESI-MRM) mode. The linear range was 0.05-50.0 ng mL(-1) for Brucine, 0.1-50.0 ng mL(-1) for Strychnine and Ephedrine, 0.01-10.0 ng mL(-1) for Aconitine and Colchicine. The limits of quantification for Brucine, Strychnine, Ephedrine, Aconitine and Colchicine were found to be 0.03, 0.05, 0.20, 0.05, 0.01 ng mL(-1), respectively. The average extraction recoveries in urine ranged from 96.0 to 114.0% and in whole blood were 94.0 to 113.0%. The intra-day and inter-day RSDs were less than 8.3 and 10.6%, respectively. The five alkaloids could be well separated within 7 min in a single run. The established method should be suitable for the determination of trace alkaloids in body fluids.  相似文献   

6.
A validated method is described for the simultaneous analysis of PGE2, 11-, 12-, and 5-HETEs from cultured cells using HPLC negative electrospray ionization tandem mass spectrometry (LC/MS/MS). This method permits quantification of selected individual arachidonic acid metabolites from cell extracts without derivatization, multiple purification steps, or lengthy separation times required by traditional GC-MS- or HPLC-UV -based methods. Accuracy assessments of values calculated using this method showed deviations from nominal values were < or =15%. An average relative deviation of 7% of mean calculated values was observed for values taken on separate days. The lower limit of detection for all metabolites was 1.3 pg. The method was used to quantify arachidonic acid metabolites present in various cancer cell lines after incubation with arachidonic acid and the selective cyclooxygenase-2 inhibitor celecoxib. Results showed that the presence of celecoxib in lung cancer A549 cells reduced production of both PGE2 and 11-HETE in a concentration-dependent manner.  相似文献   

7.
Carbofuran (CFN), carbosulfan (CSN) and fenobucarb (FBC) are carbamate pesticides that are widely used in gardening and agriculture for the control of insects. Human poisoning due to occupational or self-poisoning exposures is also reported, so assays are required to quantify the plasma concentration of these insecticides. An LC-MS/MS method was developed and validated for the simultaneous quantification of these three carbamate insecticides in the plasma of patients with acute intentional self-poisoning. Plasma samples were pretreated by acetonitrile for protein precipitation. Chromatography was carried out on a Luna C18(2) analytical column with gradient elution using a mobile phase containing acetonitrile and water with 10mM ammonium acetate. Mass spectrometric analysis was performed by an Applied Biosystems MDS Sciex API 2000 triple quadrupole mass spectrometer coupled with electrospray ionization (ESI) source in the positive ion mode. The total run time was 7 min. The assay was validated over a concentration range from 10 to 1000 ng/ml for CSN and FBC and 20-2000 ng/ml for CFN. The precision and accuracy for both intra- and inter-day determination of all analytes were acceptable (<15%). No significant matrix effect was observed. Stability of compounds was established for short term bench and autosampler storage as well as freeze/thaw cycles. The method was effectively applied to 270 clinical samples from patients with a history of acute intentional carbamate self-poisoning.  相似文献   

8.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

9.
5-Azacytidine (5AC), a nucleoside analogue and hypomethylating agent, has anticancer properties and has been utilized in the treatment of various malignancies. 5AC is unstable and rapidly hydrolyzed to several by-products, including 5-azacytosine and 5-azauracil. A sensitive, reliable method was developed to quantitate 5AC using LC/MS/MS to perform pharmacokinetic and pharmacodynamic studies on 5AC combination therapy trials. Blood samples were collected in a heparinized tube and immediately processed for storage. To increase the stability of 5AC in plasma, 25 ng/mL tetrahydrouridine was added to the plasma and snap frozen. Plasma samples were extracted using acetonitrile then cleaned up by Oasis MCX ion exchange solid-phase extraction cartridges. 5AC was separated on an YMC Jsphr M80 C(18) column with gradient elution of ammonium acetate (2 mM) with 0.1% formic acid and methanol mobile phase. 5AC elutes at 5.0 +/- 0.2 min with a total run time of 30 min. Identification was through positive-ion mode and multiple reaction monitoring mode at m/z+ 244.9-->113.0 for 5AC and m/z+ 242.0-->126.0 for 5-methyl-2'-deoxycytidine, the internal standard. The lower limit of quantitation of 5AC was 5 ng/mL in human plasma, and linearity was observed from 5 to 500 ng/mL fitted by linear regression with 1/x weight. This method is 50 times more sensitive than previously published assays and successfully allows studies to characterize the pharmacokinetics and pharmacodynamics of 5AC.  相似文献   

10.
The apolipoprotein A-I mimetic peptide D-4F is a potential therapeutical agent effective in maintaining cardiovascular health. A bioanalytical assay based on high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/MS/MS) to quantitate the D-4F amount in rabbit plasma was developed and validated. A compound with a close structure similarity to the D-4F (only one amino acid A–V altered) was used as an internal standard. Both D-4F and the internal standard were extracted by protein precipitation using acetonitrile/0.2% Triton XL 80N. The correlation coefficient of the calibration curve was 0.9991 in the range 20–40,000 ng/mL. This assay can be used for pharmacokinetic studies of the drug. Also, it may be adjusted for the quantification of other members of apolipoprotein A-I mimetic peptide family.  相似文献   

11.
A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric method (HPLC-MS-MS) has been developed and validated for the determination of soyasaponins Ba and Bb in human serum using glycyrrhizin as internal standard (I.S.). Soyasaponins Ba and Bb were extracted from human serum by liquid-liquid extraction and cleaned up by C(18) solid-phase extraction (SPE), followed by separation on a C(18) reversed-phase column using acetonitrile/water containing 0.025% acetic acid as a mobile phase for gradient elution. Soyasaponins Ba and Bb, and I.S. were ionized by negative ion pneumatically assisted electrospray and detected by HPLC-MS-MS in the multiple-reaction monitoring (MRM) mode using precursor-->product ion combinations at m/z 958-->940, 942-->924 and 822-->351, respectively. The calibration curves were linear (r(2)>0.991) in the concentration range of 0.5-100.0 ng/mL, with lower limits of quantification of 0.5 and 0.3 ng/mL for soyasaponins Ba and Bb, respectively, in human serum. Intra-day and inter-day relative standard deviations (R.S.D.) were less than 7.9 and 11.3%, respectively. The mean recoveries of soyasaponins Ba and Bb ranged from 92 to 101% and from 85 to 94%, respectively.  相似文献   

12.
A selective, rapid and sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed for the quantitative determination of mitiglinide in human plasma. With nateglinide as internal standard, sample pretreatment involved a one-step extraction with diethyl ether of 0.2 mL plasma. The separation was performed on an ACQUITY UPLCtrade mark BEH C(18) column (50 mm x 2.1 mm, i.d., 1.7 microm) with the mobile phase consisting of methanol and 10 mmol/L ammonium acetate (65:35, v/v) at a flow rate of 0.25 mL/min. The detection was carried out by means of electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). Linear calibration curves were obtained in the concentration range of 1.080-5400 ng/mL, with a lower limit of quantification of 1.080 ng/mL. The intra- and inter-day precision (RSD) values were below 15% and accuracy (RE) was from -3.5% to 7.3% at all QC levels. The method was fully validated and successfully applied to a clinical pharmacokinetic study of mitiglinide in 10 healthy volunteers following oral administration.  相似文献   

13.
An original method based upon high-performance liquid chromatography coupled to electrospray ionization mass spectrometry has been developed for corticosterone (B) quantification in human serum. After extraction by diethyl ether using triamcinolone (T) as an internal standard, solutes are separated on a C18 microbore column (250×1.0 mm, I.D.), using acetonitrile–water–formic acid (40:59.9:0.1, v/v/v) as the mobile phase (flow-rate 40 μl/min). Detection is performed on an API 1 single quadrupole mass spectrometer equipped with a ESI interface and operated in positive ionization mode. Corticosterone quantifications were realized by computing peak area ratios (B/T) of the serum extracts analyzed in SIM mode (m/z 347 and m/z 395 for B and T, respectively), and comparing them with the calibration curve (r=0.998).  相似文献   

14.
A sensitive method for the determination of lapatinib (GW572016) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Plasma samples (100 microL) were prepared using solid phase extraction (SPE) columns, and 6.0 microL of the reconstituted eluate was injected onto a Phenomenex CuroSil-PFP 3 mu analytical column (50 mm x 2.0mm) with an isocratic mobile phase. Analytes were detected with a PE SCIEX API-365 LC-MS/MS system at unit (Q1) and low (Q3) resolution in positive multiple reaction monitoring mode (m/z 581 (precursor ion) to m/z 364 (product ion) for lapatinib). The mean recovery for lapatinib was 75% with a lower limit of quantification of 15 ng/mL (S/N=11.3, CV< or =14%). This method was validated over a linear range of 100-10,000 ng/mL, and results from a 5-day validation study demonstrated good within-day and between-day precision and accuracy. This method has been used to measure plasma lapatinib concentrations in a Phase I study in children with cancer.  相似文献   

15.
A rapid, sensitive and specific method for quantifying the aromatase inhibitor (anastrozole) in human plasma using dexchlorpheniramine as the internal standard (I.S.) is described herein. The analyte and the I.S. were extracted from 200 microl of human plasma by liquid-liquid extraction using a mixture of diethyl ether:dichloromethane (70:30, v/v) solution. Extracts were removed and dried in the organic phase then reconstituted with 200 microl of acetonitrile:water (50:50; v/v). The extracts were analyzed by high performance liquid chromatography coupled with photospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed isocratically on a Genesis, C18 4 microm analytical column (100 mm x 2.1mm i.d.). The method had a chromatographic run time of 2.5 min and a linear calibration curve ranging from 0.05-10 ng ml(-1). The limit of quantification (LOQ) was 0.05 ng ml(-1). This HPLC-MS-MS procedure was used to assess pharmacokinetic studies.  相似文献   

16.
We have expanded a liquid chromatographic-tandem mass spectrometric method that measures 3-hydroxykynurenine and 3-hydroxyanthranilic acid in addition to tryptophan and kynurenine both intra- and extracellularly. After reversed phase HPLC separation, the compounds were detected in the MS positive multiple reaction monitoring mode. We found a good linear response for each tryptophan metabolite. The lower limit of quantification for each compound ranged from 0.01 to 0.1 microM. The extraction efficiencies from spiked cell samples and culture medium ranged between 83 and 111% and the overall coefficient of variation of analyses was less than 7%. Using our method, we found tryptophan metabolites in the cells and the culture medium of LN229 human glioma cells were stimulated by interferon-gamma, a known inducer of indoleamine 2,3-dioxygenase. The intracellular concentrations of kynurenine, 3-hydroxykynurenine and 3-hydroxyanthranilic acid were higher than those in the medium. This is the first report of a method for the simultaneous determination of tryptophan and its metabolic products both intra- and extracellularly.  相似文献   

17.
A rapid, sensitive and specific method was developed for the quantification of valacyclovir and acyclovir in human plasma. Sample preparation was performed by protein precipitation with acetonitrile followed by filtration. Valacyclovir, acyclovir and ganciclovir (internal standard) were separated isocratically on a reversed-phase porous graphitized carbon analytical column (2.1 mm x 125.0 mm i.d., particle size 5 microm), using a mobile phase of acetonitrile/water with 0.05% (v/v) diethylamine (50:50, v/v) at a flow rate of 0.15 mL min(-1) in 4.0 min. Detection was performed by negative electrospray ionization using the selected ion monitoring mode of the deprotonated molecular ions at m/z 323.0 for valacyclovir, 224.0 for acyclovir and 254.0 for ganciclovir. The assay had linear calibration curves over the range 0.020-0.800 microg mL(-1) for valacyclovir and 0.100-20.00 microg mL(-1) for acyclovir. Accuracy and precision were within the acceptance limit of 15%. The method was successfully applied to the analysis of plasma samples obtained from patients after oral administration of valacyclovir.  相似文献   

18.
Phytoestrogens are currently the subject of intense study owing to their potential protective effects against a number of complex diseases. However, in order to investigate the interactions between phytoestrogens and disease state effectively, it is necessary to have analytical methods which are sensitive, reproducible, and require low sample volumes. We report an assay for three isoflavones (daidzein, genistein, and glycitein), two metabolites of daidzein (equol and O-desmethylangolensin), three lignans (secoisolariciresinol, enterodiol, and enterolactone), and one flavanone (naringenin) in human urine and serum. A high throughput of samples has been achieved via the use of 96-well plate sample extraction and liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis incorporating column switching, thus making the assay suitable for use on large sample numbers, such as those found in epidemiological studies. The robustness of the assay was proven via the comparison of data generated on two different LC-MS/MS systems, with and without column switching.  相似文献   

19.
Zofenopril is a pro-drug designed to undergo metabolic hydrolysis yielding the active free sulfhydryl compound zofenoprilat, which is an angiotensin converting enzyme (ACE) inhibitor, endowed also with a marked cardioprotective activity. A simple, highly sensitive specific LC–MS–MS method was developed for the determination of zofenopril and zofenoprilat in human plasma. In order to prevent oxidative degradation of zofenoprilat and its internal standard, their free sulfhydryl groups were protected by treatment with N-ethylmaleimide (NEM), which produced the succinimide derivatives. The compounds and their corresponding fluorine derivatives, used as internal standards, were extracted from plasma with toluene. The reconstituted dried extracts were chromatographed and then monitored by a triple-stage-quadrupole instrument operating in the negative ion spray ionization mode. The method was validated over the concentration range of 1–300 ng/ml for zofenopril and 2–600 ng/ml for zofenoprilat. Inter- and intra-assay precision and accuracy of both zofenopril and zofenoprilat were better than 10%. The limit of quantitation was 1 ng/ml with zofenopril and 2 ng/ml with zofenoprilat. Extraction recovery proved to be on average 84.8% with zofenopril and 70.1% with zofenoprilat. Similar recoveries were shown by the above two internal standards. The method was applied to measure plasma concentrations of zofenopril and zofenoprilat in 18 healthy volunteers treated orally with zofenopril calcium salt at the dose of 60 mg.  相似文献   

20.
Higenamine is an active ingredient of Aconite root in Chinese herbal medicine and might be used as a new agent for a pharmaceutical stress test and was approved to undergo clinical pharmacokinetic study. Therefore, there exists a need to establish a sensitive and rapid method for the determination of higenamine in human plasma and urine. This paper described a sensitive and rapid method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of higenamine in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the compounds from biological matrices followed by injection of the extracts onto an Atlantis dC18 column with isocratic elution. The mobile phase was 0.05% formic acid in water-methanol (40:60, v/v). The mass spectrometry was carried out using positive electrospray ionization (ESI) and data acquisition was carried out in the multiple reaction monitoring (MRM) mode. The method was fully validated over the concentration range of 0.100-50.0 ng/mL and 1.00-500 ng/mL in plasma and urine, respectively. The lower limits of quantification (LLOQs) were 0.100 and 1.00 ng/mL in plasma and urine, respectively. Inter- and intra-batch precision was less than 15% and the accuracy was within 85-115% for both plasma and urine. Extraction recovery was 82.1% and 56.6% in plasma and urine, respectively. Selectivity, matrix effects and stability were also validated in human plasma and urine. The method was applied to the pharmacokinetic study of higenamine hydrochloride in Chinese healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号